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abbreviations

Table of common abbreviations

Syntax
tbl = abbreviations
tbl = abbreviations('Language', language)

Description

Abbreviations containing periods like "appt.”, "Dr.", and "fig." affect sentence detection. The
addSentenceDetails and addPartOfSpeechDetails functions use tables of abbreviations to
detect sentence boundaries. The abbreviations function outputs the default table used by these
functions. You can use this table to help create custom tables of abbreviations to specify sentence
detection behavior.

The function supports English, Japanese, German, and Korean language. The Japanese and Korean
abbreviation lists are empty because in these languages, abbreviations do not usually impact
sentence detection.

tbl = abbreviations returns a table of common English abbreviations.
tbl = abbreviations('Language', language) specifies the abbreviation language.
Examples

Table of Abbreviations

View a table of abbreviations. You can use this table to detect abbreviations and sentences when
using addSentenceDetails.

tbl = abbreviations;

head(tbl)
ans=8x2 table
Abbreviation Usage

"ATS" regular
“Ao" regular
"BEF" regular
“Ba" regular
"Bd" regular
“Bi" regular
"Bq" regular
“Cent" regular



abbreviations

Table of German Abbreviations

View a table of German abbreviations. Use this table to help create custom tables of abbreviations for
sentence detection when using addSentenceDetails.

tbl = abbreviations('Language', 'de');

head (tbl)
ans=8x2 table
Abbreviation Usage

"A.T" regular
"ABl" regular
"Abb" regular
"Abdr" regular
"Abf" regular
"Abfl" regular
"Abh" regular
"Abk" regular

Input Arguments

language — Abbreviation language
‘en' (default) | 'ja' | 'de' | 'ko'

Abbreviation language, specified as one of the following:

* 'en' - English
* 'ja' -Japanese
+ 'de' - German
* 'ko' - Korean

If you specify 'ja' or 'ko', then the function returns an empty table. For more information about
language support in Text Analytics Toolbox™, see “Language Considerations”.

Output Arguments

tb1l — Table of abbreviations
table

Table of abbreviations. The addSentenceDetails and splitSentences functions, by default, use
this table to detect sentence boundaries. This table only contains abbreviations typically written with
periods.

The table has two variables:

* Abbreviation - Abbreviation, specified as a string
* Usage - Type of abbreviation, specified as a categorical scalar

The following table describes the possible values of Usage and the behavior of
addSentenceDetails and splitSentences when observing abbreviations of these types.
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word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

If the previous
word is not a
number, then
break at a trailing
period.

30 in. The
width is 10
in."

Usage Behavior Example Example Text Detected
Abbreviation Sentences

regular If the next word is |"appt." "Book an appt. ["Book an
a capitalized We'll meet appt."
sentence starter, then."
then break at the "We'll meet
trailing period. then."
Otherwise, do not "Book an appt. |"Book an appt.
break at the today." today."
trailing period.

inner Do not break after |"Dr." "Dr. Smith." "Dr. Smith."
trailing period.

reference If the next token is |"fig." "See fig. 3." ["See fig. 3."
not a number, then " . " P

; Try a fig. Try a fig.

break at a trailing Th ez are d y d
period. If the next hice. "They are
token is a number, nice."
then do not break
at the trailing
period.

unit If the previous “in." "The height is ["The height is

30 in."

"The width is
10 in."

"The item is
10 in. wide."

"The item is
10 in. wide."

"Come in. Sit
down."

"Come in."

"Sit down."

The Japanese and Korean abbreviation lists are empty because in these languages, abbreviations do
not usually impact sentence detection

See Also

addPartOfSpeechDetails | addSentenceDetails | tokenDetails | tokenizedDocument

Topics

“Prepare Text Data for Analysis”




abbreviations

“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018a
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Add documents to bag-of-words or bag-of-n-grams model

Syntax

newBag = addDocument (bag,documents)

Description

newBag = addDocument(bag,documents) adds documents to the bag-of-words or bag-of-n-grams
model bag.

Examples

Add Documents to Bag-of-Words Model

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents)

bag =
bag0fWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

Create another array of tokenized documents and add it to the same bag-of-words model.

documents = tokenizedDocument ([
"a third example of a short sentence"
"another short sentence"]);

newBag = addDocument(bag,documents)

newBag =
bag0fWords with properties:

Counts: [4x9 double]

Vocabulary: [1x9 string]
NumWords: 9
NumDocuments: 4
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Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn)

fds =

FileDatastore with properties:
Files: {

" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne

" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne

" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne

... and 1 more

}
Folders: {

" ...\Bdoc20b 1465442 10020\1bC4001D\28\tp7999d2al\textanalytics-e:
}
UniformRead: 0

ReadMode: 'file'
BlockSize: Inf
PreviewFcn: @extractFileText
SupportedOutputFormats: [1x16 string]
ReadFcn: @extractFileText
AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag bag0fWords
bag =
bagOfWords with properties:

Counts: [
Vocabulary: [
NumWords: ©
NumDocuments: 0

1
1x0 string]

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.
while hasdata(fds)

str = read(fds);

document = tokenizedDocument(str);

bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag
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bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: [1x276 string]
NumWords: 276
NumDocuments: 4

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Output Arguments

newBag — Output model
bagO0fWords object | bag0OfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of newBag is
the same as the type of bag.

See Also

bagOfNgrams | bag0fWords | removeDocument | removeEmptyDocuments |
tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases’
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

J

Introduced in R2017b
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addEntityDetails

Add entity tags to documents

Syntax

updatedDocuments = addEntityDetails(documents)
updatedDocuments = addEntityDetails(documents,Name,Value)
Description

Use addEntityDetails to add entity tags to documents.

Use addEntityDetails to detect person names, locations, organizations, and other named entities
in text. This process is known as named entity recognition.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = addEntityDetails(documents) detects the named entities in
documents. The function adds details to the tokens with missing entity details only. To get the entity
details from updatedDocuments, use tokenDetails.

updatedDocuments = addEntityDetails(documents,Name,Value) also specifies additional
options using one or more name-value pairs.

Tip Use addEntityDetails before using the Lower, upper, normalizeWords, removeWords,
and removeStopWords functions as addEntityDetails uses information that is removed by these
functions.

Examples

Add Named Entity Tags to Documents

Create a tokenized document array.

str = [
"Mary moved to Natick, Massachusetts."
"John uses MATLAB at MathWorks."];
documents = tokenizedDocument(str);

Add the entity details to the documents using the addEntityDetails function. This function detects
the named entities in the text and adds the details to the table returned by the tokenDetails
function. View the updated token details of the first few tokens.

documents = addEntityDetails(documents);
tdetails = tokenDetails(documents)

tdetails=13x8 table
Token DocumentNumber SentenceNumber LineNumber Type Language
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idx

ans

str

"Mary" 1 1 1 letters en
"moved"” 1 1 1 letters en
“to" 1 1 1 letters en
"Natick" 1 1 1 letters en
" 1 1 1 punctuation en
"Massachusetts" 1 1 1 letters en
o 1 1 1 punctuation en
"John" 2 1 1 letters en
"uses" 2 1 1 letters en
"MATLAB" 2 1 1 letters en
"at" 2 1 1 letters en
"MathWorks" 2 1 1 letters en
o 2 1 1 punctuation en

View the words tagged with the entities "person"”, "location", "organization", or "other".

These words are the words not tagged with "non-entity".
= tdetails.Entity ~= "non-entity";

tdetails.Token(idx)
= 6x1 string
"Mary"
"Natick"
"Massachusetts"
"John"
"MATLAB"
"MathWorks"

Add Named Entity Tags to Japanese Text

Tokenize Japanese text using tokenizedDocument.
= [
"I —ZAIRR oL Za—T =95 oLELZ, "
"ERTHASAICOZICITEES, "
"HIRIFKREYKREWNTIM?"
"RRICIT o 1B, FIECESLEVWAWVWALFICHNEL, "];

documents = tokenizedDocument(str);

For Japanese text, the software automatically adds named entity tags, so you do not need to use the

addEntityDetails function. This software detects person names, locations, organizations, and

other named entities. To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x8 table

Token DocumentNumber LineNumber Type Language Part0fSpeech Ler

=) —=" 1 1 letters ja proper-noun ") -
"EA 1 1 letters ja noun "EA
" 1 1 letters ja adposition "
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"RA LU 1 1 letters ja proper-noun "R b
"M 1 1 letters ja adposition "hin!
"Za—3—4" 1 1 letters ja proper-noun "Za-
iz 1 1 letters ja adposition ez
"Flo@L" 1 1 letters ja verb "5l i

View the words tagged with entity "person", "location", "organization", or "other". These

words are the words not tagged "non-entity".

idx = tdetails.Entity ~= "non-entity";

tdetails(idx, :).Token

ans = 11x1 string
n < IJ —n
n éA/n
"IRR R
"= 1 — 3 _7 n
||ﬁl__|_\1*|l
n éA/n
“iﬁ"
”kﬂ}i"
“iﬁ"
||¥)_'H'—‘§u
||;*éJ::§|l

Add Named Entity Tags to German Text

Tokenize German text using tokenizedDocument.

str = [
"Ernst zog von Frankfurt nach Berlin."
"Besuchen Sie Volkswagen in Wolfsburg."];

documents = tokenizedDocument(str);

To add entity tags to German text, use the addEntityDetails function. This function detects person

names, locations, organizations, and other named entities.

documents = addEntityDetails(documents);

To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x8 table

Token DocumentNumber SentenceNumber LineNumber Type Language I

"Ernst" 1 1 1 letters de |
"zog" 1 1 1 letters de !
“von" 1 1 1 letters de E
"Frankfurt" 1 1 1 letters de [
"nach" 1 1 1 letters de ;
"Berlin" 1 1 1 letters de |

1-11



1 Functions

1-12

wo 1 1 1 punctuation de
"Besuchen" 2 1 1 letters de

View the words tagged with entity "person", "location", "organization", or "other". These
words are the words not tagged with "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx, :)

ans=5x8 table

Token DocumentNumber SentenceNumber LineNumber Type Language
"Ernst" 1 1 1 letters de
"Frankfurt" 1 1 1 letters de
"Berlin" 1 1 1 letters de
"Volkswagen" 2 1 1 letters de
"Wolfsburg" 2 1 1 letters de

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'DiscardKnownValues', true specifies to discard previously computed details and
recompute them.

RetokenizeMethod — Method to retokenize documents
'entity' (default) | 'none'’

Method to retokenize documents, specified as one of the following:

* 'entity' - Transform the tokens for named entity recognition. The function merges tokens from
the same entity into a single token.

* 'none' - Do not retokenize the documents.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Par

proj
proj
proj
noul
proj
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Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Algorithms
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of addEntityDetails. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

See Also

abbreviations | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | corpusLanguage | splitSentences |
tokenDetails | tokenizedDocument | topLevelDomains

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2019a

1-13



1 Functions

1-14

addLanguageDetails

Add language identifiers to documents

Syntax

updatedDocuments = addLanguageDetails(documents)
updatedDocuments = addLanguageDetails(documents,Name,Value)

Description
Use addLanguageDetails to add language identifiers to documents.
The function supports English, Japanese, German, and Korean text.

updatedDocuments = addLanguageDetails(documents) detects the language of documents
and updates the token details. The function adds details to the tokens with missing language details
only. To get the language details from updatedDocuments, use tokenDetails.

updatedDocuments = addLanguageDetails(documents,Name,Value) specifies additional
options using one or more name-value pairs.

Tip Use addLanguageDetails before using the Lower and upper functions as
addLanguageDetails uses information that is removed by this functions.

Examples

Add Language Details to Documents

Manually tokenize some text by splitting it into an array of words. Convert the manually tokenized
text into a tokenizedDocument object by setting the ' TokenizeMethod' option to 'none’.

str = split("an example of a short sentence")';
documents = tokenizedDocument(str, 'TokenizeMethod', 'none');

View the token details using tokenDetails.

tdetails = tokenDetails(documents)

tdetails=6x2 table
Token DocumentNumber

nan®
"example"
n O.f: 1]

ngn
"short"

"sentence"

R R
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When you specify 'TokenizeMethod', 'none’, the function does not automatically detect the
language details of the documents. To add the language details, use the addLanguageDetails
function. This function, by default, automatically detects the language.

documents = addLanguageDetails(documents);
View the updated token details using tokenDetails.
tdetails = tokenDetails(documents)

tdetails=6x4 table

Token DocumentNumber Type Language
"an" 1 letters en
"example" 1 letters en
"of" 1 letters en
"a" 1 letters en
"short" 1 letters en
"sentence" 1 letters en

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'DiscardKnownValues', true specifies to discard previously computed details and
recompute them.

Language — Language
1 en 1 | 1 j a 1 | 1 de 1 | 1 ko 1
Language, specified as one of the following:

* 'en' - English
* 'ja' -Japanese
* 'de' - German
* 'ko' - Korean

If you do not specify a value, then the function detects the language from the input text using the
corpuslLanguage function.

This option specifies the language details of the tokens. To view the language details of the tokens,
use tokenDetails. These language details determine the behavior of the removeStopWords,
addPart0fSpeechDetails, normalizeWords, addSentenceDetails, and addEntityDetails
functions on the tokens.
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For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

See Also

abbreviations | addEntityDetails | addEntityDetails | addLemmaDetails |
addPart0fSpeechDetails | addSentenceDetails | addTypeDetails | corpusLanguage |
splitSentences | tokenDetails | tokenizedDocument | topLevelDomains

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Japanese Language Support”

“Language Considerations”

“German Language Support”

Introduced in R2018b
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addLemmaDetails

Add lemma forms of tokens to documents

Syntax

updatedDocuments = addLemmaDetails(documents)
updatedDocuments = addLemmaDetails(documents, 'DiscardKnownValues', true)

Description
Use addLemmaDetails to add lemma forms to documents.
The function supports English, Japanese, and Korean text.

updatedDocuments = addLemmaDetails(documents) adds lemma details to documents and
updates the token details. To get the lemma details from updatedDocuments, use tokenDetails.

updatedDocuments = addLemmaDetails(documents, 'DiscardKnownValues', true)
discards previously computed details and recomputes them.

Tip Use addLemmaDetails before using the Lower, upper, and normalizeWords functions as
addLemmaDetails uses information that is removed by these functions.

Examples

Add Lemma Details to Documents

Create a tokenized document array.

str = [
"The dogs ran after the cat."
"I am building a house."];
documents = tokenizedDocument(str);

Add lemma details to the documents using addLemmaDetails. This function lemmatizes the text and
adds the lemma form of each token to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addLemmaDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)

ans=8x6 table
Token DocumentNumber LineNumber Type Language Lemma
"The" 1 1 letters en "the"
"dogs" 1 1 letters en "dog"
“ran" 1 1 letters en “run"
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"after"
Ilthell
”Cat"

||I||

Input Arguments

documents — Input documents
tokenizedDocument array

N e

e

letters
letters
letters
punctuation
letters

Input documents, specified as a tokenizedDocument array.

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

en
en
en
en
en

"after"
Ilthell
Ilca.tll

Updated documents, returned as a tokenizedDocument array. To get the token details from

updatedDocuments, use tokenDetails.

See Also

addEntityDetails | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |

addSentenceDetails | addTypeDetails | normalizeWords | tokenDetails |
tokenizedDocument

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018b
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addPartOfSpeechDetails

Add part-of-speech tags to documents

Syntax

updatedDocuments = addPartOfSpeechDetails(documents)
updatedDocuments = addPartOfSpeechDetails(documents,Name,Value)
Description

Use addPart0fSpeechDetails to add part-of-speech tags to documents.
The function supports English, Japanese, German, and Korean text.

updatedDocuments = addPartOfSpeechDetails(documents) detects parts of speech in
documents and updates the token details. The function, by default, retokenizes the text for part-of-
speech tagging. For example, the function splits the word "you're" into the tokens "you" and "'re". To
get the part-of-speech details from updatedDocuments, use tokenDetails.

updatedDocuments = addPartOfSpeechDetails(documents,Name,Value) specifies
additional options using one or more name-value pair arguments.

Tip Use addPartOfSpeechDetails before using the Lower, upper, erasePunctuation,
normalizeWords, removeWords, and removeStopWords functions as addPart0fSpeechDetails
uses information that is removed by these functions.

Examples

Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head (tdetails)

ans=8x5 table
Token DocumentNumber LineNumber Type Language
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"fairest" 1 1 letters en
"creatures" 1 1 letters en
"desire" 1 1 letters en
"increase" 1 1 letters en
"thereby" 1 1 letters en
"beautys" 1 1 letters en
"rose" 1 1 letters en
"might" 1 1 letters en

Add part-of-speech details to the documents using the addPart0fSpeechDetails function. This
function first adds sentence information to the documents, and then adds the part-of-speech tags to
the table returned by tokenDetails. View the updated token details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)

ans=8x7 table
Token DocumentNumber SentenceNumber LineNumber Type Language Par
"fairest" 1 1 1 letters en adje
“creatures™ 1 1 1 letters en noun
"desire" 1 1 1 letters en verb
"increase" 1 1 1 letters en noun
"thereby" 1 1 1 letters en adve
"beautys" 1 1 1 letters en verb
“rose" 1 1 1 letters en noun
"might" 1 1 1 letters en auxi’

Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"ERITINA, BLT, "
"EDNAT BEELD, "
"EIZEMNES, RLOTWLS, "
"EQEMNMESFELTWS, "
"BRETITELS T, HHFEWL, !
"ELDERETHIFAEL, "
"FEEHE3E3EBDS5B, "];
documents = tokenizedDocument(str);

For Japanese text, you can get the part-of-speech details using tokenDetails. For English text, you
must first use addPartOfSpeechDetails.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8x8 table
Token DocumentNumber LineNumber Type Language Part0fSpeech Lemma
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"R 1 1 letters ja noun
ez 1 1 letters ja adposition
T 1 1 letters ja verb
o 1 1 punctuation ja punctuation
"ELD" 1 1 letters ja verb
o 1 1 punctuation ja punctuation
"R 2 1 letters ja noun
"o 2 1 letters ja adposition

Get Part of Speech Details of German Text

Tokenize German text using tokenizedDocument.
str = [
"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?

6 tokens: Heute wird ein guter Tag

To get the part of speech details for German text, first use addPart0fSpeechDetails.
documents = addPartOfSpeechDetails(documents);
To view the part of speech details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x7 table
Token DocumentNumber SentenceNumber LineNumber Type Language
"Guten" 1 1 1 letters de
"Morgen" 1 1 1 letters de
S 1 1 1 punctuation de
"Wie" 1 2 1 letters de
"geht" 1 2 1 letters de
"es" 1 2 1 letters de
"dir" 1 2 1 letters de
o 1 2 1 punctuation de

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'DiscardKnownValues', true specifies to discard previously computed details and
recompute them.

RetokenizeMethod — Method to retokenize documents
'part-of-speech' (default) | 'none’

Method to retokenize documents, specified as one of the following:

* 'part-of-speech' - Transform the tokens for part-of-speech tagging. The function performs
these tasks:

* Split compound words. For example, split the compound word "wanna" into the tokens
"want" and "to". This includes compound words containing apostrophes. For example, the
function splits the word "don't" into the tokens "do" and "n't".

* Merge periods that do not end sentences with preceding tokens. For example, merge the

tokens "Mr" and "." into the token "Mr.".

* For German text, merge abbreviations that span multiple tokens. For example, merge the
tokens "z", ".", "B", and "." into the single token "z. B.".

* Merge runs of periods into ellipses. For example, merge three instances of " ." into the single
token "...".

* 'none' - Do not retokenize the documents.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations for sentence detection, specified as a string array, character vector, cell array of
character vectors, or a table.

If the input documents do not contain sentence details, then the function first runs the
addSentenceDetails function and specifies the abbreviation list given by 'Abbreviations'. To
specify more options for sentence detection (for example, sentence starters) use the
addSentenceDetails function before using addPart0fSpeechDetails details.

If Abbreviations is a string array, character vector, or cell array of character vectors, then the
function treats these as regular abbreviations. If the next word is a capitalized sentence starter, then
the function breaks at the trailing period. The function ignores any differences in the letter case of
the abbreviations. Specify the sentence starters using the Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify Abbreviations as
a table. The table must have variables named Abbreviation and Usage, where Abbreviation
contains the abbreviations, and Usage contains the type of each abbreviation. The following table
describes the possible values of Usage, and the behavior of the function when passed abbreviations
of these types.
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word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

If the previous
word is not a
number, then
break at a trailing
period.

30 in. The
width is 10
in."

Usage Behavior Example Example Text Detected
Abbreviation Sentences

regular If the next word is |"appt." "Book an appt. ["Book an
a capitalized We'll meet appt."
sentence starter, then."
then break at the "We'll meet
trailing period. then."
Otherwise, do not "Book an appt. |"Book an appt.
break at the today." today."
trailing period.

inner Do not break after |"Dr." "Dr. Smith." "Dr. Smith."
trailing period.

reference If the next token is |"fig." "See fig. 3." ["See fig. 3."
not a number, then " . " P

; Try a fig. Try a fig.

break at a trailing Th ez are d y d
period. If the next hice. "They are
token is a number, nice."
then do not break
at the trailing
period.

unit If the previous “in." "The height is ["The height is

30 in."

"The width is
10 in."

"The item is
10 in. wide."

"The item is
10 in. wide."

"Come in. Sit
down."

"Come in."

"Sit down."

The default value is the output of the abbreviations function. For Japanese and Korean text,
abbreviations do not usually impact sentence detection.

Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with mixed
single letters and periods, such as "U.S.A." as regular abbreviations. You do not need to include these
abbreviations in Abbreviations.
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Data Types: char | string | table | cell

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

More About

Part-of-Speech Tags

The addPart0fSpeechDetails function adds part-of-speech tags to the table returned by the
tokenDetails function. The function tags each token with a categorical tag with one of the
following class names:

+ "adjective" - Adjective

+ "adposition" - Adposition

* "adverb" - Adverb

* "auxiliary-verb" - Auxiliary verb

e "coord-conjunction" - Coordinating conjunction
+ "determiner" - Determiner

 "interjection" - Interjection

* "noun" - Noun

* "numeral" - Numeral

* "particle" - Particle

* "pronoun" - Pronoun

* "proper-noun" - Proper noun

* "punctuation" - Punctuation

* "subord-conjunction" - Subordinating conjucntion
* "symbol" - Symbol

* "verb" - Verb

* "other" - Other

Algorithms

If the input documents do not contain sentence details, then the function first runs
addSentenceDetails.



addPartOfSpeechDetails

See Also
addEntityDetails | addLanguageDetails | addLemmaDetails | addSentenceDetails |
addTypeDetails | normalizeWords | tokenDetails | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2018b
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Add sentence numbers to documents

Syntax

updatedDocuments = addSentenceDetails(documents)
updatedDocuments = addSentenceDetails(documents,Name,Value)
Description

Use addSentenceDetails to add sentence information to documents.
The function supports English, Japanese, German, and Korean text.

updatedDocuments = addSentenceDetails(documents) detects the sentence boundaries in
documents and updates the token details. To get the sentence details from updatedDocuments, use
tokenDetails.

updatedDocuments = addSentenceDetails(documents,Name,Value) specifies additional
options using one or more name-value pair arguments.

Tip Use addSentenceDetails before using the Lower, upper, erasePunctuation,
normalizeWords, removeWords, and removeStopWords functions as addSentenceDetails uses
information that is removed by these functions.

Examples

Add Sentence Details to Documents

Create a tokenized document array.

str = [

"This is an example document. It has two sentences."

"This document has one sentence."

"Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds the sentence
numbers to the table returned by tokenDetails. View the updated token details of the first few
tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head (tdetails)

ans=8x6 table
Token DocumentNumber SentenceNumber LineNumber Type Language
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"This" 1 1 1 letters en
"is" 1 1 1 letters en
"an" 1 1 1 letters en
"example" 1 1 1 letters en
"document" 1 1 1 letters en
o 1 1 1 punctuation en
"It 1 2 1 letters en
"has" 1 2 1 letters en

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
tdetails.SentenceNumber == 2;

tdetails(idx, :)

ans=6x6 table

Token DocumentNumber SentenceNumber LineNumber Type Language

"It 3 2 1 letters en
"also" 3 2 1 letters en
"has" 3 2 1 letters en
"two" 3 2 1 letters en
"sentences"” 3 2 1 letters en
o 3 2 1 punctuation en

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Abbreviations',["cm" "mm" "in"] specifies to detect sentences boundaries where
these abbreviations are followed by a period and a capitalized sentence starter.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations, specified as a string array, character vector, cell array of character vectors, or a
table.

If Abbreviations is a string array, character vector, or cell array of character vectors, then the
function treats these as regular abbreviations. If the next word is a capitalized sentence starter, then
the function breaks at the trailing period. The function ignores any differences in the letter case of
the abbreviations. Specify the sentence starters using the Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify Abbreviations as
a table. The table must have variables named Abbreviation and Usage, where Abbreviation
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contains the abbreviations, and Usage contains the type of each abbreviation. The following table
describes the possible values of Usage, and the behavior of the function when passed abbreviations

of these types.

word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

If the previous
word is not a
number, then
break at a trailing
period.

30 in. The
width is 10
in."

Usage Behavior Example Example Text Detected
Abbreviation Sentences

regular If the next word is |"appt." "Book an appt. ["Book an
a capitalized We'll meet appt."
sentence starter, then."
then break at the "We'll meet
trailing period. then."
Otherwise, do not "Book an appt. |"Book an appt.
break at the today." today."
trailing period.

inner Do not break after |"Dr." "Dr. Smith." "Dr. Smith."
trailing period.

reference If the next token is |"fig." "See fig. 3." |["See fig. 3."
not a number, then " . " P

5 Try a fig. Try a fig.

break at a trailing Th ez oe g y g
periOd. If the next nice." "They are
token is a number, nice."
then do not break
at the trailing
period.

unit If the previous "in." "The height is ["The height is

30 in."

"The width is
10 in."

"The item is
10 in. wide."

"The item is
10 in. wide."

"Come in. Sit
down."

"Come in."

"Sit down."

The default value is the output of the abbreviations function. For Japanese and Korean text,

abbreviations do not usually impact sentence detection.
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Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with mixed
single letters and periods, such as "U.S.A." as regular abbreviations. You do not need to include these
abbreviations in Abbreviations.

Example: ["cm" "mm" "in"]

Data Types: char | string | table | cell

Starters — Words that start a sentence
string array | character vector | cell array of character vectors

Words that start a sentence, specified as a string array, character vector, or a cell array of character
vectors. If a sentence starter appears capitalized after a regular abbreviation, then the function
detects a sentence boundary at the trailing period. The function ignores any differences in the letter
case of the sentence starters.

The default value is the output of the stopWords function.

Data Types: char | string | cell

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

More About

Language Considerations

The addSentenceDetails function detects sentence boundaries based on punctuation characters
and line number information. For English and German text, the function also uses a list of
abbreviations passed to the function.

For other languages, you might need to specify your own list of abbreviations for sentence detection.
To do this, use the 'Abbreviations' option of addSentenceDetails.

Algorithms

If emoticons or emoji characters appear after a terminating punctuation character, then the function
splits the sentence after the emoticons and emaoji.
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See Also

abbreviations | addEntityDetails | addLanguageDetails | addLemmaDetails |
addPartOfSpeechDetails | addTypeDetails | splitSentences | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018a

1-30



addTypeDetails

addTypeDetails

Add token type details to documents

Syntax

updatedDocuments = addTypeDetails(documents)
updatedDocuments addTypeDetails(documents,Name,Value)

Description

updatedDocuments = addTypeDetails(documents) detects the token types in documents and
updates the token details. The function adds type details to the tokens with unknown type only. To get
the token types from updatedDocuments, use tokenDetails.

updatedDocuments = addTypeDetails(documents,Name,Value) specifies additional options
using one or more name-value pairs.

Tip Use addTypeDetails before using the Lower, upper, and erasePunctuation functions as
addTypeDetails uses information that is removed by these functions.

Examples

Add Token Type Details to Documents

Convert manually tokenized text into a tokenizedDocument object, setting the 'TokenizeMethod'
option to 'none’.

str = ["For" "more" "information" "," "see" "https://www.mathworks.com" "."];
documents = tokenizedDocument(str, 'TokenizeMethod', 'none')

documents =
tokenizedDocument:

7 tokens: For more information , see https://www.mathworks.com .

View the token details using the tokenDetails function.
tdetails = tokenDetails(documents)

tdetails=7x2 table

Token DocumentNumber
"For" 1
"more" 1
"information" 1
o 1
"see" 1
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"https://www.mathworks.com" 1
II.II 1

If you set 'TokenizeMethod' to 'none’ in the call to the tokenizedDocument function, then it
does not detect the types of the tokens. To add the token type details, use the addTypeDetails
function.

documents = addTypeDetails(documents);
View the updated token details.
tdetails = tokenDetails(documents)

tdetails=7x3 table

Token DocumentNumber Type
"For" 1 letters
"more" 1 letters
"information" 1 letters
o 1 punctuation
"see" 1 letters
"https://www.mathworks.com" 1 web-address
o 1 punctuation

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'TopLevelDomains',["com" "net" "org"] specifies the top-level domains "com",
"net", and "org" for web address detection.

TopLevelDomains — Top-level domains
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as a character vector, string array, or
cell array of character vectors.

If you do not specify TopLevelDomains, then the function uses the output of the topLevelDomains
function.
Example: ["com” "net" "org"]

Data Types: char | string | cell



addTypeDetails

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.

Data Types: logical

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

See Also

abbreviations | addEntityDetails | addLanguageDetails | addLemmaDetails |
addPart0fSpeechDetails | addSentenceDetails | corpusLanguage | splitSentences |
tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”

Introduced in R2018b

1-33



1 Functions

1-34

bagOfNgrams

Bag-of-n-grams model

Description

A bag-of-n-grams model records the number of times that each n-gram appears in each document of a
collection. An n-gram is a collection of n successive words.

bagOfNgrams does not split text into words. To create an array of tokenized documents, see
tokenizedDocument.

Creation

Syntax

bag = bag0fNgrams

bag = bag0fNgrams(documents)

bag = bagO0fNgrams( _ , 'NgramLengths',lengths)
bag = bag0fNgrams(uniqueNgrams, counts)
Description

bag = bag0fNgrams creates an empty bag-of-n-grams model.

bag bagOfNgrams (documents) creates a bag-of-n-grams model and counts the bigrams (pairs of
words) in documents.

bag = bagOfNgrams(  , 'NgramLengths', lengths) counts n-grams of the specified lengths
using any of the previous syntaxes.

bag = bag0fNgrams (uniqueNgrams, counts) creates a bag-of-n-grams model using the n-grams
in uniqueNgrams and the corresponding frequency counts in counts. If uniqueNgrams contains
<missing> values, then the corresponding values in counts are ignored.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

uniqueNgrams — Unique n-gram list
string array | cell array of character vectors

Unique n-gram list, specified as a NumNg rams-by-maxN string array or cell array of character vectors,
where NumNgrams is the number of unique n-grams, and maxN is the length of the largest n-gram.
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The value of uniqueNgrams (i, j) is the jth word of the ith n-gram. If the number of words in the
ith n-gram is less than maxN, then the remaining entries of the ith row of uniqueNgrams are empty.

If uniqueNgrams contains <missing>, then the function ignores the corresponding values in
counts.

Each n-gram must have at least one word.
EXaInple: [IIAnII nn ' ||An|| ||examp'Le|| ’ ||examp1e|| nn ]

Data Types: string | cell

counts — Frequency counts of n-grams
matrix of nonnegative integers

Frequency counts of n-grams corresponding to the rows of uniqueNgrams, specified as a matrix of
nonnegative integers. The value counts (i, j) corresponds to the number of times the n-gram
uniqueNgrams(j, :) appears in the ith document.

counts must have as many columns as uniqueNgrams has rows.

lengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Properties

Counts — N-gram counts per document
sparse matrix

N-gram counts per document, specified as a sparse matrix.

Ngrams — Unique n-grams in model
string array

Unique n-grams in the model, specified as a string array. Ngrams (i, j) is the jth word of the ith n-
gram. If the number of columns of Ngrams is greater than the number of words in the n-gram, then
the remaining entries are empty.

NgramLengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

NumNgrams — Number of n-grams seen
nonnegative integer

Number of n-grams seen, specified as a nonnegative integer.
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NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions

encode Encode documents as matrix of word or n-gram counts

tfidf Term Frequency-Inverse Document Frequency (tf-idf) matrix
topkngrams Most frequent n-grams

addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams model

removeEmptyDocuments  Remove empty documents from tokenized document array, bag-of-words
model, or bag-of-n-grams model

removeNgrams Remove n-grams from bag-of-n-grams model

removelnfrequentNgrams Remove infrequently seen n-grams from bag-of-n-grams model

join Combine multiple bag-of-words or bag-of-n-grams models

wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples

Create Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);
documents(1:10)

ans =
10x1 tokenizedDocument:

70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair ti
71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial -
64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel

Create a bag-of-n-grams model.

bag bagO0fNgrams (documents)

bag =
bagOfNgrams with properties:
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Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

Visualize the model using a word cloud.

figure
wordcloud(bag);
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Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and trigrams), specify
"NgramLengths' to be the vector [2 3].

bag = bag0fNgrams(documents, 'NgramLengths',[2 3])

bag =
bagOfNgrams with properties:

Counts: [154x18022 double]
Vocabulary: [1x3092 string]
Ngrams: [18022x3 string]
NgramLengths: [2 3]
NumNgrams: 18022
NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).
topkngrams(bag, 10, 'NGramLengths',2)

ans=10x3 table

Ngram Count NgramLength
"thou" "art" o 34 2
"mine" "eye" o 15 2
"thy" "self" o 14 2
"thou" "dost" o 13 2
"mine" "own" o 13 2
"thy" "sweet" o 12 2
"thy" "love" o 11 2
"dost" "thou" o 10 2
"thou" "wilt" o 10 2
"love" "thee" o 9 2

View the 10 most common n-grams of length 3 (trigrams).
topkngrams(bag, 10, 'NGramLengths',3)

ans=10x3 table

Ngram Count NgramLength
"thy" "sweet" "self" 4 3
"why" "dost" "thou" 4 3
"thy" "self" "thy" 3 3
"thou" "thy" "self" 3 3
"mine" "eye" "heart" 3 3
"thou" "shalt" "find" 3 3
"fair" "kind" "true" 3 3
"thou" "art" "fair" 2 3
"lTove" "thy" "self" 2 3
"thy" "self" "thou" 2 3
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Create Bag-of-N-Grams Model from Unique N-Grams and Counts
Create a bag-of-n-grams model using a string array of unique n-grams and a matrix of counts.

Load the example n-grams and counts from sonnetsBigramCounts.mat. This file contains a string
array uniqueNgrams, which contains the unique n-grams, and the matrix counts, which contains
the n-gram frequency counts.

load sonnetsBigramCounts.mat
View the first few n-grams in uniqueNgrams.
uniqueNgrams(1:10,:)

ans = 10x2 string

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"”
"beautys" "rose"
"rose" "might"
"might" "never"
"never" "die"

"die" "riper"

Create the bag-of-n-grams model.
bag = bagOfNgrams(uniqueNgrams, counts)

bag =
bag0OfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

See Also
addDocument | bag0fWords | encode | removeDocument | removeEmptyDocuments |
removeInfrequentNgrams | removeNgrams | tfidf | tokenizedDocument | topkngrams

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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Bag-of-words model

Description

A bag-of-words model (also known as a term-frequency counter) records the number of times that
words appear in each document of a collection.

bagO0fWords does not split text into words. To create an array of tokenized documents, see
tokenizedDocument.

Creation

Syntax

bag
bag
bag

bagO0fWords
bagO0OfWords (documents)
bag0OfWords (uniqueWords, counts)

Description
bag = bag0fWords creates an empty bag-of-words model.

bag = bag0fWords(documents) counts the words appearing in documents and returns a bag-of-
words model.

bag = bagO0fWords (uniqueWords, counts) creates a bag-of-words model using the words in
uniqueWords and the corresponding frequency counts in counts.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

uniqueWords — Unique word list
string vector | cell array of character vectors

Unique word list, specified as a string vector or a cell array of character vectors. If uniqueWords
contains <missing>, then the function ignores the missing values. The size of uniqueWords must be
1-by-V where V is the number of columns of counts.

Example: ["an" "example" "list"]

Data Types: string | cell
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words corresponding to uniqueWords, specified as a matrix of nonnegative
integers. The value counts (i, j) corresponds to the number of times the word uniqueWords(j)
appears in the ith document.

counts must have numel (uniqueWords) columns.

Properties

Counts — Word counts per document
sparse matrix

Word counts per document, specified as a sparse matrix.

NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

NumWords — Number of words in model
nonnegative integer

Number of words in the model, specified as a nonnegative integer.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions

encode Encode documents as matrix of word or n-gram counts

tfidf Term Frequency-Inverse Document Frequency (tf-idf) matrix
topkwords Most important words in bag-of-words model or LDA topic
addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams model

removeEmptyDocuments Remove empty documents from tokenized document array, bag-of-words
model, or bag-of-n-grams model

removeWords Remove selected words from documents or bag-of-words model
removelnfrequentWords  Remove words with low counts from bag-of-words model

join Combine multiple bag-of-words or bag-of-n-grams models

wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples
Create Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
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Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag bagOfWords (documents)

bag =
bag0fWords with properties:

Counts: [154x3092 doublel]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

View the top 10 words and their total counts.
tbl = topkwords(bag,10)

tb1l=10x2 table

Word Count
"thy" 281
"thou" 234
"Tove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53

Create Bag-of-Words Model from Unique Words and Counts

Create a bag-of-words model using a string array of unique words and a matrix of word counts.

uniqueWords = ["a" "an" "another" "example" "final" "sentence" "third"];
counts = [ ...
120101 0;
0031040;
10050 31;
100170 0];
bag = bag0fWords(uniqueWords, counts)
bag =

bagOfWords with properties:
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Counts: [4x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the read function to be

extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn)

fds =

FileDatastore with properties:
Files: {

" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne

" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne

" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne

... and 1 more

}
Folders: {

' ...\Bdoc20b 1465442 10020\1bC4001D\28\tp7999d2al\textanalytics-e
}
UniformRead: 0

ReadMode: 'file'
BlockSize: Inf
PreviewFcn: @extractFileText
SupportedOutputFormats: [1x16 string]
ReadFcn: @extractFileText
AlternateFileSystemRoots: {}

Create an empty bag-of-words model.
bag = bag0fWords

bag =
bagOfWords with properties:

Counts: [
Vocabulary: [
NumWords: ©
NumDocuments: 0

1
1x0 string]

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.
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while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: [1x276 string]
NumWords: 276
NumDocuments: 4

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to removeWords.
Stop words are words such as "a", "the", and "in" which are commonly removed from text before
analysis.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeWords(bag, stopWords)

newBag =
bagOfWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence" "second"]
NumwWords: 4
NumDocuments: 2

Most Frequent Words of Bag-of-Words Model
Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);
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Create a bag-of-words model using bag0fWords.

bag = bagOfWords(documents)

bag =

bagOfWords with properties:

Counts:
Vocabulary:
NumWords:
NumDocuments:

[154x3092 double]
[1x3092 string]
3092

154

Find the top five words.

T = topkwords(bag);

Find the top 20 words in the model.

k = 20;

T = topkwords(bag, k)

T=20x2 table

Word Count
"thy" 281
"thou" 234
"lTove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53
"beauty" 52
"nor" 52
"art" 51
"yet" 51
"o" 50
50

"heart"

Create Tf-idf Matrix

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";

str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10x10

3.6507 4.3438 2.7344 3.6507

[cNoNoNoNoNoNoNoNO
[cNoNoNoNoNoNoNoNo
[cNoNoNoNoNoNoNoNO]

Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.

4.3438

[cNoNoNoNoNoNoNoNO

.2644
.5287

.2644

.2644
.2644

.2644

3.2452

locNoNoNoNoNoNoNoNO)

3.8918

[cNoNoNoNoNoNoNoNO]

Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092

2.4720

[cNoNoNoNoNoNoNoNO]
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NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);
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Create Bag-of-Words Model in Parallel

hata

If your text data is contained in multiple files in a folder, then you can import the text data and create

a bag-of-words model in parallel using parfor. If you have Parallel Computing Toolbox™

installed,

then the parfor loop runs in parallel, otherwise, it runs in serial. Use join to combine an array of

bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Get a list of the files and their

locations using dir.

fileLocation = fullfile(matlabroot, 'examples', 'textanalytics', 'exampleSonnet*.txt');

fileInfo = dir(fileLocation)

fileInfo =
0x1 empty struct array with fields:

name
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folder
date
bytes
isdir
datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of bag-of-
words models.

bag = bag0fWords;

numFiles = numel(fileInfo);
parfor i = 1l:numFiles
f = fileInfo(i);
filename = fullfile(f.folder, f.name);

textData = extractFileText(filename);
document = tokenizedDocument(textData);
bag(i) = bagOfWords(document);

end

Combine the bag-of-words models using join.
bag = join(bag)

bag =
bagOfWords with properties:

Counts: [
Vocabulary: [
NumWords: ©
NumDocuments: 0

]
1x0 string]

Tips

» Ifyou intend to use a held out test set for your work, then partition your text data before using
bag0fWords. Otherwise, the bag-of-words model may bias your analysis.

See Also
addDocument | bag0fNgrams | encode | removeDocument | removeEmptyDocuments |
removeInfrequentWords | removeWords | tfidf | tokenizedDocument | topkwords

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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bleuEvaluationScore

Evaluate translation or summarization with BLEU similarity score

Syntax

score
score

bleuEvaluationScore(candidate, references)
bleuEvaluationScore(candidate, references, 'NgramWeights',ngramWeights)

Description

The BiLingual Evaluation Understudy (BLEU) scoring algorithm evaluates the similarity between a
candidate document and a collection of reference documents. Use the BLEU score to evaluate the
quality of document translation and summarization models.

score = bleuEvaluationScore(candidate, references) returns the BLEU similarity score
between the specified candidate document and the reference documents. The function computes n-
gram overlaps between candidate and references for n-gram lengths one through four, with
equal weighting. For more information, see “BLEU Score” on page 1-52.

score = bleuEvaluationScore(candidate, references, 'NgramWeights', ngramWeights)
uses the specified n-gram weighting, where ngramWeights (i) corresponds to the weight for n-
grams of length i. The length of the weight vector determines the range of n-gram lengths to use for
the BLEU score evaluation.

Examples

Evaluate Summary

Create an array of tokenized documents and extract a summary using the extractSummary function.

str = [
"The fox jumped over the dog."
"The fast brown fox jumped over the lazy dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);
summary = extractSummary(documents)

summary =
tokenizedDocument:

10 tokens: The fast brown fox jumped over the lazy dog .

Specify the reference documents as a tokenizedDocument array.

str = [
"The quick brown animal jumped over the lazy dog."
"The quick brown fox jumped over the lazy dog."];
references = tokenizedDocument(str);
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Calculate the BLEU score between the summary and the reference documents using the
bleuEvaluationScore function.

score = bleuEvaluationScore(summary, references)

score = 0.7825

This score indicates a fairly good similarity. A BLEU score close to one indicates strong similarity.

Specify N-Gram Weights

Create an array of tokenized documents and extract a summary using the ext ractSummary function.

str = [
"The fox jumped over the dog."
"The fast brown fox jumped over the lazy dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);
summary = extractSummary(documents)

summary =
tokenizedDocument:

10 tokens: The fast brown fox jumped over the lazy dog .

Specify the reference documents as a tokenizedDocument array.

str = [
"The quick brown animal jumped over the lazy dog."
"The quick brown fox jumped over the lazy dog."];
references = tokenizedDocument(str);

Calculate the BLEU score between the candidate document and the reference documents using the
default options. The bleuEvaluationScore function, by default, uses n-grams of length one
through four with equal weights.

score = bleuEvaluationScore(summary, references)

score = 0.7825

Given that the summary document differs only by one word to one of the reference documents, this
score might suggest a lower similarity than might be expected. This behavior is due to the function
using n-grams which are too large for the short document length.

To address this, use shorter n-grams by setting the 'NgramWeights' option to a shorter vector.
Calculate the BLEU score again using only unigrams and bigrams by setting the 'NgramWeights'
option to a two-element vector. Treat unigrams and bigrams equally by specifying equal weights.

score = bleuEvaluationScore(summary, references, 'NgramwWeights',[0.5 0.5])

score = 0.8367

This score suggests a better similarity than before.
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Input Arguments

candidate — Candidate document
tokenizedDocument scalar | string array | cell array of character vectors

Candidate document, specified as a tokenizedDocument scalar, a string array, or a cell array of
character vectors. If candidate is not a tokenizedDocument scalar, then it must be a row vector
representing a single document, where each element is a word.

references — Reference documents
tokenizedDocument array | string array | cell array of character vectors

Reference documents, specified as a tokenizedDocument array, a string array, or a cell array of
character vectors. If references is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To evaluate against multiple
reference documents, use a tokenizedDocument array.

ngramWeights — N-gram weights
[0.25 0.25 0.25 0.25] (default) | row vector of finite nonnegative values

N-gram weights, specified as a row vector of finite nonnegative values, where ngramwWeights (i)

corresponds to the weight for n-grams of length i. The length of the weight vector determines the
range of n-gram lengths to use for the BLEU score evaluation. The function normalizes the n-gram
weights to sum to one.

Tip If the number of words in candidate is smaller than the number of elements in ngramWeights,
then the resulting BLEU score is zero. To ensure that bleuEvaluationScore returns nonzero
scores for very short documents, set ngramWeights to a vector with fewer elements than the
number of words in candidate.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

score — BLEU score
scalar

BLEU score, returned as a scalar value in the range [0,1] or NaN.

A BLEU score close to zero indicates poor similarity between candidate and references. A BLEU
score close to one indicates strong similarity. If candidate is identical to one of the reference
documents, then scoreis 1. If candidate and references are both empty documents, then score
is NaN. For more information, see “BLEU Score” on page 1-52.

Tip If the number of words in candidate is smaller than the number of elements in ngramWeights,
then the resulting BLEU score is zero. To ensure that bleuEvaluationScore returns nonzero
scores for very short documents, set ngramWeights to a vector with fewer elements than the
number of words in candidate.
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Algorithms
BLEU Score

The BiLingual Evaluation Understudy (BLEU) scoring algorithm [1] evaluates the similarity between a
candidate document and a collection of reference documents. Use the BLEU score to evaluate the
quality of document translation and summarization models.

To compute the BLEU score, the algorithm uses n-gram counts, clipped n-gram counts, modified n-
gram precision scores, and a brevity penalty.

The clipped n-gram counts function Countg;p, if necessary, truncates the n-gram count for each n-

gram so that it does not exceed the largest count observed in any single reference for that n-gram.
The clipped counts function is given by

Countgjjp(n-gram) = min(Count(n-gram), MaxRefCount(n-gram)),

where Count(n-gram) denotes the n-gram counts and MaxRefCount(n-gram) is the largest n-gram
count observed in a single reference document for that n-gram.

The modified n-gram precision scores are given by

Countjjp(n-gram)
_ C € {Candidates} n-gram € C
Count(n-gram’) ’
C’ € {Candidates} n-gram’ € C’

Pn

where n corresponds to the n-gram length and {candidates} is the set of sentences in the candidate
documents.

Given a vector of n-gram weights w, the BLEU score is given by

N —
E wplogpy

n=1

bleuScore = BP - exp

’

where N is the largest n-gram length, the entries in p correspond to the geometric averages of the
modified n-gram precisions, and BP is the brevity penalty given by

1 ife>r
BP = .
el~cifcsr

where c is the length of the candidate document and r is the length of the reference document with
length closest to the candidate length.

References

[1] Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: A Method for Automatic
Evaluation of Machine Translation." In Proceedings of the 40th annual meeting on association
for computational linguistics, pp. 311-318. Association for Computational Linguistics, 2002.

See Also
bm25Similarity | cosineSimilarity | extractSummary | lexrankScores | mmrScores |
rougeEvaluationScore | textrankScores | tokenizedDocument
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Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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bm25Similarity

Document similarities with BM25 algorithm

Syntax

similarities = bm25Similarity(documents)
similarities = bm25Similarity(documents,queries)
similarities = bm25Similarity(bag)

similarities = bm25Similarity(bag,queries)
similarities = bm25Similarity( _ ,Name,Value)
Description

Use bm25Similarity to calculate document similarities.

By default, this function calculates BM25 similarities. To calculate BM11, BM15, or BM25+
similarities, use the 'DocumentlLengthScaling' and 'DocumentLengthCorrection' arguments.

similarities = bm25Similarity(documents) returns the pairwise BM25 similarities between
the specified documents. The score in similarities (i, j) represents the similarity between
documents (i) and documents(j).

similarities = bm25Similarity(documents,queries) returns similarities between
documents and queries. The score in similarities(i, j) represents the similarity between
documents(i) and queries(j).

similarities = bm25Similarity(bag) returns similarities between the documents encoded by
the specified bag-of-words or bag-of-n-grams model. The score in similarities(i, j) represents
the similarity between the ith and jth documents encoded by bag.

similarities = bm25Similarity(bag, queries) returns similarities between the documents
encoded by the bag-of-words or bag-of-n-grams model bag and the documents specified by queries.
The score in similarities (i, j) represents the similarity between the ith document encoded by
bag and queries(j).

similarities = bm25Similarity( ,Name, Value) specifies additional options using one or
more name-value pair arguments. For instance, to use the BM25+ algorithm, set the
'DocumentLengthCorrection’' option to a nonzero value.

Examples

Similarity Between Documents

Create an array of tokenized documents.

textData = [
"the quick brown fox jumped over the lazy dog"
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"the fast brown fox jumped over the lazy dog"

"the lazy dog sat there and did nothing"

"the other animals sat there watching"];
documents = tokenizedDocument (textData)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast brown fox jumped over the lazy dog
tokens: the lazy dog sat there and did nothing
tokens: the other animals sat there watching

[e) e e Ve (o]

Calculate the similarities between them using the bm25Similarity function. The output is a sparse
matrix.

similarities = bm25Similarity(documents);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Document")
ylabel("Document")
title("BM25 Similarities")

BM25 Similarities

1 0.9996 0.1935 0.1372 0.05639 25
2
_2 0.1935 0.9996 0.1372 0.05639
o
E
3
L]
=]
O
3 0.1698 0.1698
11
105
4 0.094 57 0.09457
1 2 3 4
Document
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The first three documents have the highest pairwise similarities which indicates that these
documents are most similar. The last document has comparatively low pairwise similarities with the
other documents which indicates that this document is less like the other documents.

Similarity to Query
Create an array of input documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
8 tokens: the fast fox jumped over the lazy dog

7 tokens: the dog sat there and did nothing

6 tokens: the other animals sat there watching

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"];

queries = tokenizedDocument(str)

queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate the similarities between input documents and query documents using the
bm25Similarity function. The output is a sparse matrix. The score in similarities(i,j)
represents the similarity between documents (i) and queries(j).

similarities = bm25Similarity(documents,queries);
Visualize the similarities of the documents in a heat map.
figure

heatmap(similarities);

xlabel("Query Document")

ylabel("Input Document")
title("BM25 Similarities")
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BEM25 Similarities
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In this case, the first input document is most like the first query document.

Document Similarities Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument (textData);

bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 double]
Vocabulary: [1x3527 string]
NumWords: 3527
NumDocuments: 154

04a
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Calculate similarities between the sonnets using the bm25Similarity function. The output is a

sparse matrix.

similarities = bm25Similarity(bag);
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Visualize the similarities between the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")

title("BM25 Similarities")

BM25 Similarities
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Document
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1100

1 2 3 4 5
Document

Evaluate BM25+ Document Similarity

The BM25+ algorithm addresses a limitation of the BM25 algorithm: the component of the term-
frequency normalization by document length is not properly lower bounded. As a result of this
limitation, long documents which do not match the query term can often be scored unfairly by BM25
as having a similar relevance to shorter documents that do not contain the query term.

BM25+ addresses this limitation by using a document length correction factor (the value of the

'DocumentlLengthScaling' name-value pair). This factor prevents the algorithm from over-
penalizing long documents.

Create two arrays of tokenized documents.

textDatal = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
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"the dog sat there and did nothing"
"the other animals sat there watching"];
documentsl = tokenizedDocument(textDatal)

documentsl =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
8 tokens: the fast fox jumped over the lazy dog

7 tokens: the dog sat there and did nothing

6 tokens: the other animals sat there watching

textData2 = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"l];
documents2 = tokenizedDocument(textData2)

documents2 =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

To calculate the BM25+ document similarities, use the bm25Similarity function and set the
'DocumentLengthCorrection' option to a nonzero value. In this case, set the
'DocumentLengthCorrection' option to 1.

similarities = bm25Similarity(documentsl,documents2, 'DocumentLengthCorrection',1);
Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Query")
ylabel("Document")
title("BM25+ Similarities")
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Here, when compared with the example “Similarity Between Documents” on page 1-54, the scores
show more similarity between the input documents and the first query document.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bag0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | bag0OfWords object | bagOfNgrams object | string array of words | cell
array of character vectors

Set of query documents, specified as one of the following:
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* A tokenizedDocument array
* AbagOfWords or bag0OfNgrams object
* A 1-by-N string array representing a single document, where each element is a word

* A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bag0fWords (documents). If
your syntax specifies bag, then it uses bag.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ... ,NameN, ValueN.

Example: bm25Similarity(documents, 'TFScaling',1.5) returns the pairwise similarities for
the specified documents and sets the token frequency scaling factor to 1.5.

IDFWeight — Method to compute inverse document frequency factor
"textrank' (default) | 'classic-bm25' | "'normal’ | "unary' | 'smooth' | "max"' |
"probabilistic’

Method to compute inverse document frequency factor, specified as the comma-separated pair
consisting of ' IDFWeight' and one of the following:

* ‘'textrank' - Use TextRank IDF weighting [2]. For each term, set the IDF factor to

* T1og((N-NT+0.5)/(NT+0.5)) if the term occurs in more than half of the documents, where N
is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

* IDFCorrection*avglIDF if the term occurs in half of the documents or f, where avgIDF is the
average IDF of all tokens.

* 'classic-bm25"' - For each term, set the IDF factor to Log( (N-NT+0.5)/(NT+0.5)).
* 'normal’' - For each term, set the IDF factor to Log (N/NT).

* ‘'unary' - For each term, set the IDF factor to 1.

* ‘'smooth' - For each term, set the IDF factor to Log (1+NT/NT).

* 'max' - For each term, set the IDF factor to Log(1+max (NT)/NT).

* 'probabilistic' - For each term, set the IDF factor to Log( (N-NT)/NT).

where N is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

TFScaling — Term frequency scaling factor
1.2 (default) | nonnegative scalar

Term frequency scaling factor, specified as the comma-separated pair consisting of ' TFScaling' and
a nonnegative scalar.

This option corresponds to the value k in the BM25 algorithm. For more information, see “BM25” on
page 1-63.
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Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

DocumentLengthScaling — Document length scaling factor
0.75 (default) | scalar in the range [0,1]

Document length scaling factor, specified as the comma-separated pair consisting of
'DocumentlLengthScaling' and a scalar in the range [0,1].

This option corresponds to the value b in the BM25 algorithm. When b=1, the BM25 algorithm is
equivalent to BM11. When b=0, the BM25 algorithm is equivalent to BM15. For more information,
see “BM11” on page 1-64, “BM15” on page 1-64, or “BM25” on page 1-63.

Data Types: double

IDFCorrection — Inverse document frequency correction factor
0.25 (default) | nonnegative scalar

Inverse document frequency correction factor, specified as the comma-separated pair consisting of
"IDFCorrection' and a nonnegative scalar.

This option only applies when 'IDFWeight' is 'textrank'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

DocumentLengthCorrection — Document length correction factor
0 (default) | nonnegative scalar

Document length correction factor, specified as the comma-separated pair consisting of
'DocumentLengthCorrection' and a nonnegative scalar.

This option corresponds to the value 6 in the BM25+ algorithm. If the document length correction
factor is nonzero, then the bm25Similarity function uses the BM25+ algorithm. Otherwise, the
function uses the BM25 algorithm. For more information, see “BM25+” on page 1-63.

Data Types: double

Output Arguments

similarities — BM25 similarity scores
sparse matrix

BM25 similarity scores, returned as a sparse matrix:

* Given a single array of tokenized documents, similarities is a N-by-N nonsymmetric matrix,
where similarities(i,j) represents the similarity between documents (i) and
documents(j), and N is the number of input documents.

* Given an array of tokenized documents and a set of query documents, similarities is an N1-by-
N2 matrix, where similarities(i, j) represents the similarity between documents (i) and
the jth query document, and N1 and N2 represents the number of documents in documents and
queries, respectively.

* Given a single bag-of-words or bag-of-n-grams model, similarities is a bag.NumDocuments-
by-bag.NumDocuments nonsymmetric matrix, where similarities (i, j) represents the
similarity between the ith and jth documents encoded by bag.

* Given a bag-of-words or bag-of-n-grams models and a set of query documents, similaritiesisa
bag.NumDocuments-by-N2 matrix, where similarities(i, j) represents the similarity
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between the ith document encoded by bag and the jth document in queries, and N2
corresponds to the number of documents in queries.

Tips

* The BM25 algorithm aggregates and uses information from all the documents in the input data via
the term frequency (TF) and inverse document frequency (IDF) based options. This behavior
means that the same pair of documents can yield different BM25 similarity scores when the
function is given different collections of documents.

* The BM25 algorithm can output different scores when comparing documents to themselves. This
behavior is due to the use of the IDF weights and the document length in the BM25 algorithm.

Algorithms
BM25
Given a document from a collection of documents D, and a query document, the BM25 score is given

by

BM25(document, query; D) = E
word€ query

IDF(word;D

\ Count(word, document)(k + 1)
) Y]
Count(word, document) + k(l -b+ bmocunﬂ)

where

* Count(word,document) denotes the frequency of word in document.
* 1 denotes the average document length in D.

* k denotes the term frequency scaling factor (the value of the 'TFScaling' name-value pair
argument). This factor dampens the influence of frequently appearing terms on the BM25 score.

* b denotes the document length scaling factor (the value of the 'DocumentLengthScaling'
name-value pair argument). This factor controls how the length of a document influences the
BM25 score. When b=1, the BM25 algorithm is equivalent to BM11. When b=0, the BM25
algorithm is equivalent to BM15.

» IDF(word, D) is the inverse document frequency of the specified word given the collection of
documents D.
BM25+

The BM25+ algorithm addresses a limitation of the BM25 algorithm: the component of the term-
frequency normalization by document length is not properly lower bounded. As a result of this
limitation, long documents which do not match the query term can often be scored unfairly by BM25
as having a similar relevance to shorter documents that do not contain the query term.

The BM25+ algorithm is the same as the BM25 algorithm with one extra parameter. Given a
document from a collection of documents D and a query document, the BM25+ score is given by
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BM25" (document, query; D) = > IDF(word;D
word€ query
Count(word, document)(k + 1) +6

’

Count(word, document) + k(l -b+ bw)

where the extra parameter 6 denotes the document length correction factor (the value of the
'DocumentlLengthScaling' name-value pair). This factor prevents the algorithm from over-
penalizing long documents.

BM11

BM11 is a special case of “BM25” on page 1-63 when b=1.

Given a document from a collection of documents D, and a query document, the BM11 score is given

by

IDF(word;D)

BM11(document, query; D) = >
word€ query

Count(word, document)(k + 1)
Count(word, document) + k(w)

BM15
BM15 is a special case of “BM25” on page 1-63 when b=0.

Given a document from a collection of documents D, and a query document, the BM15 score is given
by

, Count(word, document)(k + 1)
’" Count(word, document) + k

BM15(document, query; D) = > (IDF(word;D
word€ query
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context

Search documents for word or n-gram occurrences in context

Syntax

T = context(documents,word)

T = context(documents,ngram)

T = context(_ _ ,contextLength)
T = context(___ ,Name,Value)
Description

T = context(documents,word) searches for occurrences of a single word in documents and
returns a table showing word in context and its locations. The function, by default, is case sensitive.

T = context(documents,ngram) searches for occurrences of an n-gram in documents. The
function, by default, is case sensitive.

T = context( ,contextLength) specifies the length of the context to return using any of the
previous syntaxes.

T = context( ,Name, Value) specifies additional options using one or more name-value pair
arguments using any of the previous syntaxes.

Examples

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument (textData);

Search for the word "life".

tbl = context(documents,"life");

head(tb1l)
ans=8x3 table
Context Document Word
"consumst thy self single life ah thou issueless shalt " 9 10
"ainted counterfeit lines life life repair times pencil" 16 35
"d counterfeit lines life life repair times pencil pupi” 16 36
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" heaven knows tomb hides
"he eyes long lives gives
"tender embassy love thee
"ves beauty though lovers
"s shorn away live second

life
life
life
life
life

View the occurrences in a string array.

tbl.

ans

Context

= 23x1 string

"“consumst thy self single
"ainted counterfeit lines
"d counterfeit lines life
" heaven knows tomb hides
"he eyes long lives gives
"tender embassy love thee
"ves beauty though lovers
"s shorn away live second
"e rehearse let love even
"st bail shall carry away
"art thou hast lost dregs
" thoughts food
"tten name hence immortal
" beauty mute others give
"ve life bring tomb lives
" steal thyself away term
"fe thou art assured mine
" fear worst wrongs least
"anst vex inconstant mind
" fame faster time wastes
"ess harmful deeds better
"ate hate away threw savd
" many nymphs vowd chaste

life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life

shows half parts write b"
thee "
made four two alone sink"
beauty shall black lines"
second head ere beautys "

ah thou issueless shalt "
life repair times pencil"
repair times pencil pupi"
shows half parts write b"
thee !
made four two alone sink"
beauty shall black lines"
second head ere beautys "
decay lest wise world lo"
hath line interest memor"
prey worms body dead cow"
sweetseasond showers gro"
shall though once gone w"
bring tomb lives life fa"
fair eyes poets praise d"
thou art assured mine 1i"
longer thy love stay dep"
hath end better state be"
thy revolt doth lie o ha"
thou preventst scythe cr”
provide public means pub"
saying "
keep came tripping maide"

Search Documents for N-Gram Occurrences

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.

17
18
45
63

14
69
23
50
27

Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
= extractFileText(filename);

str

textData =

split(str,newline);

documents = tokenizedDocument (textData);

Search for the bigram "dost thou".

ngram = ["dost" "thou"l;
tbl = context(documents,ngram);
head(tbl)

ans=

8x3 table

Context

Document

Word
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"unthrifty loveliness why
"ee beauteous niggard why
"ve profitless usurer why
"eavy eyelids weary night
! sweet lovely
"hy budding name o sweets
"ruth beauty love depends
! thou blind fool love

dost
dost
dost
dost
dost
dost
dost
dost

View the occurrences in a string array.

tbl.

ans

Context

= 10x1 string

"unthrifty loveliness why
"ee beauteous niggard why
"ve profitless usurer why
"eavy eyelids weary night
! sweet lovely
"hy budding name o sweets
"ruth beauty love depends
! thou blind fool love
"h rebel powers array why
"y large cost short lease

Specify Context Length

dost
dost
dost
dost
dost
dost
dost
dost
dost
dost

thou
thou
thou
thou
thou
thou
thou
thou

thou
thou
thou
thou
thou
thou
thou
thou
thou
thou

spend upon thy self thy
abuse bounteous largess
great sum sums yet canst"
desire slumbers broken s"
make shame like canker f"
thy sins enclose tongue "
therein dignified make a"
mine eyes behold know be"

spend upon thy self thy
abuse bounteous largess
great sum sums yet canst"
desire slumbers broken s"
make shame like canker f"
thy sins enclose tongue "
therein dignified make a"
mine eyes behold know be"
pine suffer dearth paint"
upon thy fading mansion "

61
95

101
137

25
35
10

19
16
5

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of

Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
= extractFileText(filename);
textData = split(str,newline);

str

documents = tokenizedDocument (textData);

Search for the word "life" and return each occurrence with a 15-character context before and after.

tbl = context(documents,"life",15);

head(tbl)
ans=8x3 table
Context Document Word
"hy self single life ah thou issuel" 9 10
"nterfeit lines life life repair ti" 16 35
"eit lines life life repair times p" 16 36
"ows tomb hides life shows half par" 17 14
"ng lives gives life thee 18 69
"assy love thee life made four two 45 23

1-67

5
26
36
11

20
17
6



1 Functions

" though lovers life beauty shall b" 63 50
"ay live second life second head er" 68 27

View the occurrences in a string array.
tbl.Context

ans = 23x1 string
"hy self single life ah thou issuel"
"nterfeit lines life life repair ti"
"eit lines life life repair times p"
"ows tomb hides life shows half par"
"ng lives gives life thee !
"assy love thee life made four two "
" though lovers life beauty shall b"
"ay live second life second head er"
" let love even life decay lest wis"
"all carry away life hath line inte"
"ast lost dregs life prey worms bod"
" thoughts food life sweetseasond s"
"hence immortal life shall though o"
"te others give life bring tomb liv"
"ing tomb lives life fair eyes poet"
"self away term life thou art assur"
"t assured mine life longer thy lov"
"t wrongs least life hath end bette"
"nconstant mind life thy revolt dot"
"er time wastes life thou preventst"
"l deeds better life provide public"
"way threw savd life saying !
"hs vowd chaste life keep came trip"

Specify Source Text
Specify source text to display context.

Load the sonnets. txt data and split it into separate documents.

txt = extractFileText("sonnets.txt");
paragraphs = split(txt, [newline newline]);

Extract the sonnets from paragraphs. The first sonnet is the fifth element of paragraphs, and the
remaining sonnets appear in every second element afterward.

sonnets = paragraphs(5:2:end);
documents = tokenizedDocument(sonnets);

Normalize the text, then search for the word "life".

documentsNormalized = normalizeWords(documents);
T = context(documentsNormalized,"life")

T=23x3 table
Context Document Word
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"sum'st thy self in singl
" : so should the line of
"ld the line of life that
"s a tomb which hide your
" live thi , and thi give
"ssi of love to thee , my
"eauti , though my lover'
" awai , to live a second
"t your love even with my
"shall carri me awai , my
"ast but lost the dreg of
"to my thought as food to
"ur name from henc immort
", when other would give
"a tomb . there live more
"yself awai , for term of

life ? ah ! if thou issueless"
life that life repair , which"
life repair , which thi , tim"
life , and show not half your"
life to thee . !
life , be made of four , with"
life : hi beauti shall in the"
life on second head ; er beau"
life decai ; lest the wise wo"
life hath in thi line some in"
life , the prei of worm , my "
life , or as sweet-season'd s"
life shall have , though i , "
life , and bring a tomb . the"
life in on of your fair ey th"
life thou art assur mine ; an"

16
16
17
18
45
63

71
74
74
75
81
83

92

18
73
75
34
128
53
100

118
18
83
10
42

108

118
13

Since the words are normalized, the contexts may not be easy to read. To view the contexts using the
original text data, specify the source text using the 'Source' option.

T = context(documentsNormalized,"life", 'Source',sonnets)

T=23%x3 table

Context Document Word

"um'st thy self in single life? Ah! if thou issueless s" 9 18
": So should the lines of life that life repair, Which " 16 73
"d the lines of life that life repair, Which this, Time" 16 75
" a tomb Which hides your life, and shows not half your" 17 34
"ves this, and this gives life to thee. ! 18 128
"assy of love to thee, My life, being made of four, wit" 45 53
"eauty, though my lover's life: His beauty shall in the" 63 100
"n away, To live a second life on second head; Ere beau" 68 59
"t your love even with my life decay; Lest the wise wor" 71 118
" shall carry me away, My life hath in this line some i" 74 18
"st but lost the dregs of life, The prey of worms, my b" 74 83
"o my thoughts as food to life, Or as sweet-season'd sh" 75 10
"name from hence immortal life shall have, Though I, on" 81 42
", When others would give life, and bring a tomb. There" 83 108
"a tomb. There lives more life in one of your fair eyes" 83 118
life thou art assured mine; A" 92 13

"hyself away, For term of

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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word — Word to find
string scalar | character vector | scalar cell array

Word to find in context, specified as a string scalar, character vector, or scalar cell array containing a
character vector.

Data Types: char | string | cell

ngram — N-gram to find
string array | cell array of character vectors

N-gram to find in context, specified as a string array or cell array of character vectors.

ngram has size 1-by-N , where N is the number of words in the n-gram. The value of ngram(j) is the
jth word of the n-gram.

The function ignores trailing empty strings in ngram.

Data Types: string | cell

contextLength — Context length
25 (default) | positive integer

Context length, specified as a positive integer.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: 'Solver', "avb' specifies to use approximate variational Bayes as the solver.

Source — Source text
string array | cell array of character vectors

Source text, specified as the comma-separated pair consisting of 'Source' and a string array or a
cell array of character vectors. If the input documents are preprocessed, and you have the source
text, then you can use this option to make the output more readable.

The source text must be the same size as documents.

IgnoreCase — Option to ignore case
false (default) | true

Option to ignore case, specified as the comma-separated pair consisting of 'IgnoreCase' and one of
the following:

+ false - search for occurrences that match the word or n-gram exactly.
* true - search for occurrences that match the word or n-gram ignoring case.

Output Arguments

T — Table of contexts
table
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Table of contexts with these columns:

Context String containing the queried word or n-gram in context
Document Numeric index of the document containing the word or n-gram
Word Numeric indices of the word or n-gram in the document

See Also

doc2cell | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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correctSpelling

Correct spelling of words

Syntax
updatedDocuments = correctSpelling(documents)

updatedWords = correctSpelling(words)

updatedWords = correctSpelling(words, 'Language', language)
[ ,unknownWords] = correctSpelling( )

= correctSpelling(_ _ ,Name,Value)

Description

Use correctSpelling to correct spelling of words in string arrays or documents.
The function supports English, German, and Korean text.

updatedDocuments = correctSpelling(documents) corrects the spelling of the words in the
tokenizedDocument array documents.

updatedWords = correctSpelling(words) corrects the spelling of the words in the string
vector words.

updatedWords = correctSpelling(words, 'Language', language) also specifies the
language of the words in the string vector words.

[ ,unknownWords] = correctSpelling( ) also returns a vector of words in the input
that were not found in the dictionary and for which no suggestion was found.

= correctSpelling( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Correct Spelling of Words in Documents

Create a tokenized document array.
str = [
"A documnent containing some misspelled worrds."

"Another documnent cntaining typos."];
documents = tokenizedDocument(str);

Correct the spelling of the words in the documents using the correctSpelling function.
updatedDocuments = correctSpelling(documents)

updatedDocuments =
2x1 tokenizedDocument:
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7 tokens: A document containing some misspelled words
5 tokens: Another document containing typos

Correct Spelling of Words in String Array
Create a string array of words.
words = ["A" "strng" "array" "containing" "misspelled" "worrds" "."];

Correct the spelling of the words in the string array using the correctSpelling function.

updatedWords

correctSpelling(words)

updatedWords = 1Ix7 string
Columns 1 through 6

"A" "string" "array" "containing" "misspelled" "words"

Column 7

Specify Known Words

Create a tokenized document array.
str = [
"Analyze text data using MATLAB."

"Another documnent cntaining typos."];
documents = tokenizedDocument(str);

Correct the spelling of the words in the documents using the correctSpelling function.
updatedDocuments = correctSpelling(documents)

updatedDocuments =
2x1 tokenizedDocument:

7 tokens: Analyze text data using MAT LAB .
5 tokens: Another document containing typos
Notice that the word "MATLAB" gets split into the two words "MAT" and "LAB".

Correct the spelling of the documents and specify "MATLAB" as a known word using the
'"KnownWords "' option.

updatedDocuments

correctSpelling(documents, 'KnownWords"', "MATLAB")

updatedDocuments =
2x1 tokenizedDocument:
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6 tokens: Analyze text data using MATLAB .
5 tokens: Another document containing typos .

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

language — Word language

1 en 1 | 1 de 1 | 1 ko 1

Word language, specified as one of the following:
* 'en' - English language

* 'de' - German language

* 'ko' - Korean language

If you do not specify language, then the software detects the language automatically.

Data Types: char | string
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: correctSpelling(documents, 'KnownWords"', ["MathWorks" "MATLAB"]) corrects
the spelling of the words in documents and treats the words "MathWorks" and "MATLAB" as
correctly spelled words.

KnownWords — Words to be treated as correct
[ 1 (default) | string array | cell array of character vectors

Words to be treated as correct, specified as the comma-separated pair consisting of 'KnownWords'
and a string array or a cell array of character vectors.

If you specify a list of known words, then these words remain unchanged when the function corrects
spelling. The software may also substitute misspelled words with words from the list of known words.

Example: ["MathWorks" "MATLAB"]
Data Types: char | string | cell



correctSpelling

ExtensionDictionary — Hunspell extension dictionary file
"' (default) | file path

Hunspell extension dictionary file (also known as personal dictionary file), specified as the comma-
separated pair consisting of 'ExtensionDictionary' and a file path of a Hunspell extension
dictionary file.

A Hunspell extension dictionary file is a . dic file containing the number of words in the dictionary
followed by a list of the words in the following format:

wordl/affixWordl
word2/affixWord2

wordN/affixWordN
*forbiddenWordl
*forbiddenWord?2

*forbiddenWordM
where:

* wordl, word2, ..., wordN is a list words to extend the Hunspell dictionary with.

+ affixWordl, affixWord2, ..., affixWordN (optional) indicate words in the Hunspell dictionary
that share affixes. Indicate affixes by concatenating them to the corresponding word with a
forward slash (/). For example, the entry exxxtreme/extreme indicates that affixes that apply to
the word "extreme" also apply to the custom word "exxxtreme".

+ forbiddenWordl, forbiddenWord2, ..., forbiddenWordN is a list of forbidden words to use for
spelling correction. Indicate forbidden words using an asterisk (*).

The entries in the Hunspell extension dictionary file can appear in any order.
For example, to create a Hunspell extension dictionary file specifying:

* The words "MathWorks", "MATLAB", and "exxxtreme".
» The affixes that apply to the word "extreme" also apply to the word "exxxtreme".
* The word "MATLOB" is a forbidden word.

use:

MathWorks

MATLAB
exxxtreme/extreme
*MATLOB

For an example showing how to create Hunspell extension dictionary files, see “Create Extension
Dictionary for Spelling Correction”. For more information about the options of Hunspell dictionary
files, see https://manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html.

Data Types: char | string

Dictionary — Hunspell dictionary file
"' (default) | file path

Hunspell dictionary file, specified as the comma-separated pair consisting of 'Dictionary' and a
file path of a Hunspell dictionary file.
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A Hunspell dictionary file is a . dic file containing the number of words in the dictionary followed by
a list of the words in the following format:

N
wordl/flagsl
word2/flags2

wordN/flagsN

where N is the number of words in the dictionary file, wordl, word2, ..., wordN are the N words in the
dictionary, and flagsl, ..., flagsN specify optional flags corresponding to the words word1l, word2,
..., wordN, respectively. Use flags to specify word attributes, for example affixes. To specify a
Hunspell affix file, use the 'Affixes' option.

For example, a to create a Hunspell dictionary file containing the 4 words "MathWorks", "MATLAB",
"correctSpelling", and "tokenizedDocument", use:

4

MathWorks

MATLAB
correctSpelling
tokenizedDocument

For more information about the options of Hunspell dictionary files, see https://
manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html.

Data Types: char | string

Affixes — Hunspell affix file
"' (default) | file path

Hunspell affix file, specified as the comma-separated pair consisting of 'Affixes' and a file path of
a Hunspell affix file.

A Hunspell affix file is a . aff file containing the number of words in the dictionary followed by a list
of the words in the following format:

optionl valuesl
option2 values2

optionM valuesM

where M is the number of options in the affix file, optionl, option2, ..., optionM are the M options,
and valuesl, ..., valuesN specify the values corresponding to the options optionl, option2, ...,
optionM, respectively. Use these options to specify affixes.

Prefixes
To define a prefix rule, use the PFX option with the format:

PFX flag crossProduct K
PFX flag strippingl prefixl conditionl

PFX flag strippingK prefixK conditionK

where the values:


https://manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html
https://manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html

correctSpelling

» flag corresponds to the flags used in the Hunspell dictionary file.
* crossProduct indicates whether prefixes and suffixes can be mixed, specified as Y or N.
* Kis the number of prefixes defined for the specified flag.

* strippingl, stripping2, ..., strippingK indicate characters to be stripped from the word
when applying prefix. If the stripping value is 0, then no stripping takes place.

+ prefixl, prefix2, ..., prefixK specify the prefixes to use.

* conditionl, condition2, ..., conditionK specify the optional conditions for which to apply the
prefixes prefixl, prefix2, ..., prefixK, respectively. For the trivial condition, specify ".".

Suffixes
To define a suffix rule, use the SFX option with the format:

SFX flag crossProduct K
SFX flag strippingl suffixl conditionl

SFX flag strippingK suffixK conditionK

where suffixl, suffix2, ..., suffixK specify the prefixes to use, and the flag, cross product, K,
stripping, and condition values are the same as the prefix format.

Example
Create a Hunspell affix file defining the following affix rules:
* Flag A:

* prefix words with "re"
* Flag B:

* suffix words not ending with "y" with "ed".
* suffix words ending with "y" with "ied", removing "y".

use the Hunspell affix file:

PFX AY 1
PFX A O re .
SFX B Y 1
SFX B 0 ed ["y]
SFX B y ied y

To use these flags in a Hunspell dictionary file, append the appropriate flags to the words using the
"/". For each word, you can specify multiple flags. For example, to specify a dictionary file
containing:

* The words "ptest" and "ptry".

* For the word "ptest" only, also include the prefix "re" using flag A.

» For both words, also include the suffixes "ed" or "ied" where appropriate using flag B

For more information about the options of Hunspell affix files, see https://manpages.ubuntu.com/
manpages/trusty/en/man4/hunspell.4.html.

Data Types: char | string
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RetokenizeMethod — Method to retokenize documents
‘split' (default) | 'none’

Method to retokenize documents, specified as the comma-separated pair consisting of
'RetokenizeMethod' and one of the following:

* 'split' - Correct spelling by splitting tokens. For example, split the incorrectly spelled token
"twowords" into the correctly spelled tokens "two" and "words".

* 'none' - Do not split tokens for spelling correction.

Output Arguments

updatedDocuments — Corrected documents
tokenizedDocument array

Corrected documents, returned as a tokenizedDocument array. If the 'RetokenizeMethod'
option is 'split', then the number of words in each updated document may be different to the
corresponding input document.

If there are multiple candidates for corrected words, then the function automatically selects a single
word for correction.

updatedWords — Corrected words
string vector

Corrected words, returned as a string vector. If the 'RetokenizeMethod' optionis 'split', then
the number of updated words may be different the number of input words.

If there are multiple candidates for corrected words, then the function automatically selects a single
word for correction.

unknownWords — Unknown words
string vector

Unknown words, returned as a string vector. The string vector unknownWords contains the input
words that are not in the spelling correction dictionary and for which no suggestions are found.

See Also
editDistance | editDistanceSearcher | tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”

Introduced in R2020a
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corpusLanguage

Detect language of text

Syntax

language = corpusLanguage(str)

Description
Use corpusLanguage to detect language of text.

The function supports English, Japanese, German, and Korean text.

language = corpusLanguage(str) detects the language of the text in str.

Examples

Detect Language of Text

Detect the language of a string array of text.

str = [
"BONAHT FLL, "
"EQEMNEBEEELTLS, "];
language = corpuslLanguage(str)

language =
1 ja 1
Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

language — Detected language
'en' | 'ja'| 'de' | 'ko'

Detected language, returned as one of the following:

* 'en' - Detected English text
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* 'ja' - Detected Japanese text
« 'de' - Detected German text
* 'ko' - Detected Korean text

See Also

abbreviations | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | splitSentences | tokenDetails | tokenizedDocument |
topLevelDomains

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2018b
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cosineSimilarity

Document similarities with cosine similarity

Syntax

similarities = cosineSimilarity(documents)
similarities = cosineSimilarity(documents,queries)

similarities = cosineSimilarity(bag)
similarities = cosineSimilarity(bag,queries)

similarities = cosineSimilarity(M)
similarities = cosineSimilarity(M1,M2)

Description

similarities = cosineSimilarity(documents) returns the pairwise cosine similarities for the
specified documents using the tf-idf matrix derived from their word counts. The score in
similarities(i,j) represents the similarity between documents (i) and documents(j).

similarities = cosineSimilarity(documents,queries) returns similarities between
documents and queries using tf-idf matrices derived from the word counts in documents. The
score in similarities (i, j) represents the similarity between documents (i) and queries(j).

similarities = cosineSimilarity(bag) returns pairwise similarities for the documents
encoded by the specified bag-of-words or bag-of-n-grams model using the tf-idf matrix derived from
the word counts in bag. The score in similarities (i, j) represents the similarity between the ith
and jth documents encoded by bag.

similarities = cosineSimilarity(bag,queries) returns similarities between the documents
encoded by the bag-of-words or bag-of-n-grams model bag and queries using tf-idf matrices derived
from the word counts in bag. The score in similarities(i, j) represents the similarity between
the ith document encoded by bag and queries(j).

similarities = cosineSimilarity (M) returns similarities for the data encoded in the row
vectors of the matrix M. The score in similarities(i, j) represents the similarity between M(1i, :)
and M(j,:).

similarities = cosineSimilarity(M1,M2) returns similarities between the documents
encoded in the matrices M1 and M2. The score in similarities (i, j) corresponds to the similarity
between M1(i,:) and M2(j,:).

Examples

Similarity Between Documents

Create an array of tokenized documents.

textData = [
"the quick brown fox jumped over the lazy dog"
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"the fast brown fox jumped over the lazy dog"

"the lazy dog sat there and did nothing"

"the other animals sat there watching"];
documents = tokenizedDocument (textData)

documents =
4x1 tokenizedDocument:

9 tokens: the quick brown fox jumped over the lazy dog
9 tokens: the fast brown fox jumped over the lazy dog
8 tokens: the lazy dog sat there and did nothing

6 tokens: the other animals sat there watching

Calculate the similarities between them using the cosineSimilarity function. The output is a
sparse matrix.

similarities = cosineSimilarity(documents);

Visualize the similarities between the documents in a heat map.

figure
heatmap(similarities);
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Cosine Similarities

0.03149 o 04

0.8

o7

0.03149 0.6

0.5

Document

0.03149

0.03149

Document

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.
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Similarity to Query
Create an array of input documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast fox jumped over the lazy dog
tokens: the dog sat there and did nothing

tokens: the other animals sat there watching

o N 00w

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"l];
queries = tokenizedDocument(str)

queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate the similarities between input and query documents using the cosineSimilarity
function. The output is a sparse matrix.

similarities = cosineSimilarity(documents,queries);
Visualize the similarities of the documents in a heat map.
figure

heatmap(similarities);

xlabel("Query Document")

ylabel("Input Document")
title("Cosine Similarities")
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Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Document Similarities Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument (textData);

bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 doublel]
Vocabulary: [1x3527 string]
NumWords: 3527
NumDocuments: 154

Calculate similarities between the sonnets using the cosineSimilarity function. The output is a
sparse matrix.

similarities = cosineSimilarity(bag);
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Visualize the similarities of the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Cosine Similarities
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Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Similarities Within Word Count Matrix

For bag-of-words input, the cosineSimilarity function calculates the cosine similarity using the tf-
idf matrix derived from the model. To compute the cosine similarities on the word count vectors
directly, input the word counts to the cosineSimilarity function as a matrix.

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument (textData);

bag = bag0OfWords(documents)

bag =
bagOfWords with properties:
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Counts: [154x3527 double]
Vocabulary: [1x3527 string]
NumWords: 3527
NumDocuments: 154

Get the matrix of word counts from the model.

M = bag.Counts;

Calculate the cosine document similarities of the word count matrix using the cosineSimilarity
function. The output is a sparse matrix.

similarities = cosineSimilarity(M);
Visualize the similarities of the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Cosine Similarities

0.4a

0.8

Document

1 2 3 4 5
Document

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.
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Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | string array of words | cell array of character vectors

Set of query documents, specified as one of the following:

* A tokenizedDocument array
* A 1-by-N string array representing a single document, where each element is a word

* A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of~-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bag0fWords (documents). If
your syntax specifies bag, then the function encodes queries using bag then uses the resulting tf-idf
matrix.

M — Input data
matrix

Input data, specified as a matrix. For example, M can be a matrix of word or n-gram counts or a tf-idf
matrix.

Data Types: double

Output Arguments

similarities — Cosine similarity scores
sparse matrix

Cosine similarity scores, returned as a sparse matrix:

* Given a single array of tokenized documents, similarities is a N-by-N symmetric matrix, where
similarities(i, j) represents the similarity between documents (i) and documents(j), and
N is the number of input documents.

* Given an array of tokenized documents and a set of query documents, similarities is an N1-by-
N2 matrix, where similarities(i, j) represents the similarity between documents (i) and
the jth query document, and N1 and N2 represents the number of documents in documents and
qgueries, respectively.
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Given a single bag-of-words or bag-of-n-grams model, similarities is a bag.NumDocuments-
by-bag.NumDocuments symmetric matrix, where similarities(1i,j) represents the similarity
between the ith and jth documents encoded by bag.

Given a bag-of-words or bag-of-n-grams models and a set of query documents, similarities is a
bag.NumDocuments-by-N2 matrix, where similarities (i, j) represents the similarity
between the ith document encoded by bag and the jth document in queries, and N2
corresponds to the number of documents in queries.

Given a single matrix, similarities isa size(M,1)-by-size(M, 1) symmetric matrix, where
similarities(1i,j) represents the similarity between M(i,:) and M(j, :).

Given two matrices, similarities is an size(M1,1)-by-size(M2, 1) matrix, where
similarities(1i,j) represents the similarity between M1(1i,:) and M2(j,:).

See Also
bleuEvaluationScore | bm25Similarity | extractSummary | lexrankScores | mmrScores |
rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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decodeHTMLENntities

Convert HTML and XML entities into characters

Syntax

newStr = decodeHTMLEntities(str)

Description

newStr = decodeHTMLEntities(str) replaces HTML and XML character entities and numeric
character references in the elements of str with their Unicode equivalent.

Examples

Replace HTML Entities with Unicode

Replace HTML character entities with their Unicode equivalent.

str = ["&lt;&gt;" "R&amp;D"];
newStr = decodeHTMLEntities(str)

newStr = Ix2 string
II<>II IIR&DII

Replace HTML numeric character references with their Unicode equivalent. Unicode character with
hex code &#x20 is a space.

str = "R&#x20;D";
newStr = decodeHTMLEntities(str)

newStr =
IIR DII

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]
Data Types: string | char | cell

Output Arguments

newStr — Output text

string array | character vector | cell array of character vectors
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Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
erasePunctuation | eraseTags | eraseURLs | lower | tokenizedDocument | upper
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doclength

Length of documents in document array

Syntax

N = doclength(documents)

Description

N = doclength(documents) returns the number of tokens in each document in documents.

Examples

Find Number of Words in Documents

Find the number of words in an array of tokenized documents. Erase the punctuation characters so

they do not get counted as words.

str = [ ...
"An example of a short sentence."
"A second short sentence."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

7 tokens: An example of a short sentence .

5 tokens: A second short sentence .

documents = erasePunctuation(documents)

documents =
2x1 tokenizedDocument:

6 tokens: An example of a short sentence
4 tokens: A second short sentence

N = doclength(documents)
N = 2x1

6

4

Input Arguments

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Output Arguments

N — Document lengths
vector of nonnegative integers

Document lengths, returned as a vector of nonnegative integers. The size of N is the same as the size
of documents.

See Also
context | doc2cell | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doc2cell

Convert documents to cell array of string vectors

Syntax

C = doc2cell(documents)

Description

C = doc2cell(documents) converts a tokenizedDocument array to a cell array. The entries of C

are string arrays containing the corresponding words in each document.

Examples

Convert Document Array to Cell Array

Convert a tokenizedDocument array to a cell array of string vectors.
documents = tokenizedDocument ([

"an example of a short sentence"

"a second short sentence"])

documents =
1x2 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

C = doc2cell(documents)

C=1x2 cell array
{1x6 string} {1x4 string}
View the first element of the cell array.

{1}

ans = 1x6 string
"an" "example" "of" "a" "short" "sentence"

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Output Arguments

C — Output cell array
cell array of string vectors

Output cell array of string vectors. Each element of C is a string vector containing the words of the
corresponding document.

See Also
context | doclength | joinWords | string | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doc2sequence

Convert documents to sequences for deep learning
Syntax

sequences = doc2sequence(enc,documents)
sequences = doc2sequence(emb,documents)
sequences = doc2sequence( _ ,Name,Value)
Description

sequences = doc2sequence(enc,documents) returns a cell array of the numeric indices of the
words in documents given by the word encoding enc. Each element of sequences is a vector of the
indices of the words in the corresponding document.

sequences = doc2sequence(emb,documents) returns a cell array of the embedding vectors of
the words in documents given by the word embedding emb. Each element of sequences is a matrix
of the embedding vectors of the words in the corresponding document.

sequences = doc2sequence( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Convert Documents to Sequences of Word Indices

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Create a word encoding.

enc = wordEncoding(documents);

Convert the documents to sequences of word indices.
sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the number of
word indices in the sequence. Because the sequences are padded, S is constant.

sequences(1:10)

ans=10x1 cell array
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
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{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection'
option to 'none"'. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents, 'PaddingDirection', 'none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans=10x1 cell array
{300x10 single}
{300x11 single}
{300x11 single}
{300x6 single}
{300x5 single}
{300x10 single}
{300x8 single}
{300x9 single}
{300x7 single}
{300x13 single}
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Pad or Truncate Sequences to Specified Length

Convert a collection of documents to sequences of word vectors using a pretrained word embedding,
and pad or truncate the sequences to a specified length.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors. Specify to left-pad or truncate the sequences to
have length 100.

sequences = doc2sequence(emb,documents, 'Length',100);

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence (the sequence length). Because the
sequence length is specified, S is constant.

sequences(1:10)

ans=10x1 cell array
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}
{300x100 single}

Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Length', 'shortest' truncates the sequences to have the same length as the shortest
sequence.

UnknownWord — Unknown word behavior
'discard' (default) | 'nan'

Unknown word behavior, specified as the comma-separated pair consisting of 'UnknownWord' and
one of the following:

* 'discard' - If a word is not in the input map, then discard it.
* 'nan' -If a word is not in the input map, then return a NaN value.

Tip If you are creating sequences for training a deep learning network with a word embedding, use
'discard'. Do not use sequences with NaN values, because doing so can propagate errors through
the network.

PaddingDirection — Padding direction
"left’' (default) | 'right' | 'none’

Padding direction, specified as the comma-separated pair consisting of 'PaddingDirection' and
one of the following:

+ 'left' - Pad sequences on the left.

* 'right' - Pad sequences on the right.

* 'none' - Do not pad sequences.

Tip When converting large collections of data using a high-dimensional word embedding, padding
can require large amounts of memory. To prevent the function from adding too much padding, set the
"PaddingDirection’ optionto 'none' orset 'Length' to a smaller value.

PaddingValue — Padding value
0 (default) | numeric scalar

Padding value, specified as the comma-separated pair consisting of 'PaddingValue' and a numeric
scalar. Do not pad sequences with NaN, because doing so can propagate errors through the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Length — Sequence length
"longest' (default) | 'shortest' | positive integer

Sequence length, specified as the comma-separated pair consisting of 'Length' and one of the
following:
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* ‘'longest' - Pad sequences to have the same length as the longest sequence.

* 'shortest' - Truncate sequences to have the same length as the shortest sequence.

» Positive integer - Pad or truncate sequences to have the specified length. The function truncates
the sequences on the right.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
char | string

Output Arguments

sequences — Output sequences
cell array

Output sequences, returned as a cell array.

For word embedding input, the ith element of sequences is a matrix of the word vectors
corresponding to the ith input document.

For word encoding input, the ith element of sequences is a vector of the word encoding indices
corresponding to the ith input document.

Tips

*  When converting large collections of data using a high-dimensional word embedding, padding can
require large amounts of memory. To prevent the function from adding too much padding, set the
'PaddingDirection' optionto 'none' orset 'Length' to a smaller value.

See Also

fastTextWordEmbedding | ind2word | isVocabularyWord | tokenizedDocument |
trainWordEmbedding | vec2word | word2ind | word2vec | wordEmbedding |
wordEmbeddinglLayer | wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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docfun

Apply function to words in documents

Syntax

newDocuments = docfun(func,documents)

newDocuments = docfun(func,documentsl,...,documentsN)
Description

newDocuments = docfun(func,documents) calls the function specified by the function handle
func and passes elements of documents as a string vector of words.

» If func accepts exactly one input argument, then the words of newDocuments (i) are the output
of func(string(documents(i))).

» If func accepts two input arguments, then the words of newDocuments (i) are the output of
func(string(documents(i)),details), where details contains the corresponding token
details output by tokenDetails.

» If func changes the number of words in the document, then docfun removes the token details
from that document.

docfun does not perform the calls to function func in a specific order.

newDocuments = docfun(func,documentsl,...,documentsN) calls the function specified by
the function handle func and passes elements of documents1,..,documentsN as string vectors of
words, where N is the number of inputs to the function func. The words of newDocuments (i) are
the output of func(string(documentsl(i)),...,string(documentsN(i))).

Each of documentsl,..,documentsN must be the same size.

Examples

Reverse Words in Documents

Apply reverse to each word in a document array.

documents = tokenizedDocument([ ...
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

func = @reverse;
newDocuments = docfun(func,documents)
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newDocuments =
2x1 tokenizedDocument:

6 tokens: na elpmaxe fo a trohs ecnetnes
4 tokens: a dnoces trohs ecnetnes

Specify Document Function with Multiple Inputs

Tag words by combining the words from one document array with another, using the string function
plus.

Create the first tokenizedDocument array. Erase the punctuation and convert the text to lowercase.

str = [ .

"An example of a short sentence."
"A second short sentence."];

str = erasePunctuation(str);

str = lower(str);

documentsl = tokenizedDocument(str)

documentsl =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

Create the second tokenizedDocument array. The documents have the same number of words as
the corresponding documents in documents1. The words of documents?2 are POS tags for the
corresponding words.

documents2 = tokenizedDocument ([
" det noun prep det adj noun"
" det adj adj noun"])

documents?2 =
2x1 tokenizedDocument:

6 tokens: det noun prep _det _adj _noun
4 tokens: _det _adj _adj _noun

func = @plus;

newDocuments docfun(func,documentsl,documents?)

newDocuments =
2x1 tokenizedDocument:

6 tokens: an_det example _noun of prep a det short adj sentence noun
4 tokens: a_det second adj short adj sentence noun

The output is not the same as calling plus on the documents directly.

plus(documentsl,documents?2)
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ans =
2x1 tokenizedDocument:

12 tokens: an example of a short sentence det noun prep det adj noun
8 tokens: a second short sentence det adj _adj noun

Input Arguments

func — Function handle
function handle

Function handle that accepts N string arrays as inputs and outputs a string array. func must accept
string(documentsl(i)),...,string(documentsN(i)) as input.

Function handle to apply to words in documents. The function must have one of the following
syntaxes:

* newWords func(words), where words is a string array of the words of a single document.

* newWords func(words,details), where words is a string array of the words of a single
document, and details is the corresponding table of token details given by tokenDetails.

* newWords = func(wordsl,...,wordsN), wherewordsl,...,wordsN are string arrays of
words.

Example: @reverse

Data Types: function handle

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also

addPart0fSpeechDetails | addSentenceDetails | bag0OfNgrams | bagOfWords |
decodeHTMLEntities | lower | plus | regexprep | replace | tokenDetails |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”

Introduced in R2017b
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editDistance

Find edit distance between two strings or documents

Syntax

editDistance(strl,str2)
editDistance(documentl,document?2)
editDistance( __ ,Name,Value)

d
d
d

Description

d = editDistance(strl,str2) returns the lowest number of grapheme (Unicode term for
human-perceived characters) insertions, deletions, and substitutions required to convert strl to
str2.

d = editDistance(documentl,document?2) returns the lowest number of token insertions,
deletions, and substitutions required to convert documentl to document?2.

d = editDistance( ,Name, Value) specifies additional options using one or more name-value
pair arguments.

Examples

Edit Distance Between Two Strings

Find the edit distance between the strings "Text analytics" and "Text analysis". The edit
distance, by default, is the total number of grapheme insertions, deletions, and substitutions required
to change one string to another.

strl
str2

"Text analytics";
"Text analysis";

Find the edit distance.

d editDistance(strl,str2)
d =2
This means changing the first string to the second requires two edits. For example:

1 Substitution - Substitute the character "t" toan "s": "Text analytics" to "Text
analysics".

2 Deletion - Delete the character "c": "Text analysics" to "Text analysis".

1-103



1 Functions

1-104

Edit Distance Between Two Documents

Find the edit distance between two tokenized documents. For tokenized document input, the edit
distance, by default, is the total number of token insertions, deletions, and substitutions required to
change one document to another.

strl = "It's time for breakfast.";
documentl = tokenizedDocument(strl);

str2 = "It's now time to sleep.";
document2 = tokenizedDocument(str2);

Find the edit distance.

d = editDistance(documentl,document2)

d=3

This means changing the first document to the second requires three edits. For example:
1 Insertion - Insert the word "now".

2 Substitution - Substitute the word "for" with "to".

3 Substitution - Substitute the word "breakfast" with "sleep".

Specify Cost Values

The editDistance function, by default, returns the lowest number of grapheme insertions,
deletions, and substitutions required to change one string to another. To also include the swap action
in the calculation, use the 'SwapCost' option.

First, find the edit distance between the strings "MATALB" and "MATLAB".

strl "MATALB";
str2 "MATLAB";
d = editDistance(strl,str2)

d =2
One possible edit is:

1 Substitute the second "A" with "L": ("MATALB" to "MATLLB").
2  Substitute the second "L" with "A": ("MATLLB" to "MATLAB").

The default value for the swap cost (the cost of swapping two adjacent graphemes) is Inf. This
means that swaps do not count towards the edit distance. To include swaps, set the 'SwapCost'
option to 1.

d

editDistance(strl,str2, 'SwapCost',1)
d=1

This means there is one action. For example, swap the adjacent characters "A" and "L".
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Specify Custom Cost Function

To compute the edit distance between two words and specify that the edits are case-insensitive,
specify a custom substitute cost function.

First, compute the edit distance between the strings "MATLAB" and "MathWorks".
d

editDistance("MATLAB", "MathWorks")
d =8
This means changing the first string to the second requires eight edits. For example:

Substitution - Substitute the character "A" with "a". ("MATLAB" to "MaTLAB")
Substitution - Substitute the character "T" with "t". ("MaTLAB" to "MatLAB")
Substitution - Substitute the character "L" with "h". ("MatLAB" to "MathAB")
Substitution - Substitute the character "A" with "W". ("MathAB" to "MathWB")
Substitution - Substitute the character "B" with "o0". ("MathWB" to "MathWo")
Insertion - Insert the character "r". ("MathWo" to "MathWor")

Insertion - Insert the character "k". ("MathWor" to "MathWork")

Insertion - Insert the character "s". ("MathWork" to "MathWorks")

0 N OO B A W N MR

Compute the edit distance and specify the custom substitution cost function
caselnsensitiveSubstituteCost, listed at the end of the example. The custom function
caseInsensitiveSubstituteCost returns O if the two inputs are the same or differ only by case
and returns 1 otherwise.

d editDistance("MATLAB", "MathWorks", 'SubstituteCost',@caseInsensitiveSubstituteCost)

d==56
This means the total cost for changing the first string to the second is 6. For example:

Substitute the character "A" with "a". ("MATLAB" to "MaTLAB")

Substitution (cost 0 L

Substitute the character "T" with "t". ("MaTLAB" to "MatLAB")
- (
- (

Substitution (cost 0
Substitute the character "L" with "h". ("MatLAB" to "MathAB")
Substitute the character "A" with "W". ("MathAB" to "MathWB")
Substitution (cost 1) - Substitute the character "B" with "0". ("MathWB" to "MathWo"
Insert (cost 1) - Insert the character "r". ("MathWo" to "MathWor")

Insert (cost 1) - Insert the character "k". ("MathWor" to "MathWork")

Insert (cost 1) - Insert the character "s". ("MathWork" to "MathWorks")

)_
)_
)_
)_

(

(

Substitution (cost 1

Substitution (cost 1
(

00 N OO U1 A W N MR

Custom Cost Function

The custom function caseInsensitiveSubstituteCost returns 0 if the two inputs are the same
or differ only by case and returns 1 otherwise.

function cost = caseInsensitiveSubstituteCost(graphemel,grapheme2)

if lower(graphemel) == lower(grapheme2)
cost = 0;
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else
cost = 1;
end

end

Input Arguments

strl — Source string
string array | character vector | cell array of character vectors

Source string, specified as a string array, character vector, or a cell array of character vectors.

If strl contains multiple strings, then str2 must be the same size as strl or scalar.

Data Types: char | string | cell

str2 — Target string
string array | character vector | cell array of character vectors

Target string, specified as a string array, character vector, or a cell array of character vectors.

If str2 contains multiple strings, then strl must be the same size as str2 or scalar.

Data Types: char | string | cell

documentl — Source document
tokenizedDocument

Source document, specified as a tokenizedDocument array.

If documentl contains multiple documents, then document2 must be the same size as documentl
or scalar.

document2 — Target document
tokenizedDocument

Target document, specified as a tokenizedDocument array.

If document?2 contains multiple documents, then documentl must be the same size as document?2
or scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: editDistance("MATALB", "MATLAB", 'SwapCost', 1) returns the edit distance between
the strings "MATALB" and "MATLAB" and sets the cost to swap two adjacent graphemes to 1.

InsertCost — Cost to insert grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to insert a grapheme or token, specified as the comma-separated pair consisting of
'"InsertCost' and a nonnegative scalar or a function handle.
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If 'InsertCost' is a function handle, then the function must accept a single input and return the
cost of inserting the input to the source. For example:

» For string input to editDistance, the cost function must have the form cost =
func(grapheme), where the function returns the cost of inserting grapheme into strl.

* For document input to editDistance, the cost function must have the form cost =
func(token), where the function returns the cost of inserting token into documentl.

Example: 'InsertCost',2

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

DeleteCost — Cost to delete grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to delete grapheme or token, specified as the comma-separated pair consisting of
'DeleteCost' and a nonnegative scalar or a function handle.

If 'DeleteCost' is a function handle, then the function must accept a single input and return the
cost of deleting the input from the source. For example:

» For string input to editDistance, the cost function must have the form cost =
func(grapheme), where the function returns the cost of deleting grapheme from stri.

* For document input to editDistance, the cost function must have the form cost =
func(token), where the function returns the cost of deleting token from documentl.

Example: 'DeleteCost',?2

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
function handle

SubstituteCost — Cost to substitute grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to substitute a grapheme or token, specified as the comma-separated pair consisting of
'SubstituteCost' and a nonnegative scalar or a function handle.

If 'SubstituteCost' is a function handle, then the function must accept exactly two inputs and
return the cost of substituting the first input with the second in the source. For example:

» For string input to editDistance, the cost function must have the form cost =
func(graphemel,grapheme2), where the function returns the cost of substituting graphemel
with grapheme2 in strl.

* For document input to editDistance, the cost function must have the form cost =
func(tokenl, token2), where the function returns the cost of substituting tokenl with token2
in documentl.

Example: 'SubstituteCost',?2

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
function handle

SwapCost — Cost to swap two adjacent graphemes or tokens
Inf (default) | nonnegative scalar | function handle
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Cost to swap two adjacent graphemes or tokens, specified as the comma-separated pair consisting of
'SwapCost' and a nonnegative scalar or a function handle.

If 'SwapCost' is a function handle, then the function must accept exactly two inputs and return the
cost of swapping the first input with the second in the source. For example:

» For string input to editDistance, the cost function must have the form cost =
func(graphemel, grapheme2), where the function returns the cost of swapping the adjacent
graphemes graphemel and grapheme2 in strl.

* For document input to editDistance, the cost function must have the form cost =
func(tokenl, token2), where the function returns the cost of swapping the adjacent tokens
tokenl and token2 in documentl.

Example: 'SwapCost',?2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

function handle
Output Arguments

d — Edit distance
nonnegative scalar

Edit distance, returned as a nonnegative scalar.

Algorithms
Edit Distance

The function, by default, uses the Levenshtein distance: the lowest number of insertions, deletions,
and substitutions required to convert one string to another.

For other commonly used edit distances, use these options:

Distance Description Options
Levenshtein (default) lowest number of insertions, Default
deletions, and substitutions
Damerau-Levenshtein lowest number of insertions, 'SwapCost',1
deletions, substitutions, and
swaps
Hamming lowest number of substitutions |'InsertCost',Inf, 'Delete
only Cost',Inf
See Also

correctSpelling | editDistanceSearcher | knnsearch | rangesearch | splitGraphemes |
tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
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“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2019a
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editDistanceSearcher

Edit distance nearest neighbor searcher

Description

An edit distance searcher performs a nearest neighborhood search in a list of known strings, using
edit distance.

Creation

Syntax

eds
eds

editDistanceSearcher(vocabulary,maxDist)
editDistanceSearcher(vocabulary,maxDist,Name,Value)

Description

eds = editDistanceSearcher(vocabulary,maxDist) creates an edit distance searcher and
sets the Vocabulary and MaximumDistance properties. The returned object searches the words in
vocabulary and with maximum edit distance maxDist.

eds = editDistanceSearcher(vocabulary,maxDist,Name,Value) specifies additional
options using one or more name-value pair arguments.

Properties

Vocabulary — Words to compare against
string vector | character vector | cell array of character vectors

Words to compare against, specified as a string vector, character vector, or a cell array of character
vectors.

Data Types: char | string | cell

MaximumDistance — Maximum edit distance
positive scalar

Maximum edit distance, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

InsertCost — Cost to insert grapheme
1 (default) | nonnegative scalar | function handle

Cost to insert grapheme, specified as a nonnegative scalar or a function handle.

If InsertCost is a function handle, then the function must accept a single input and return the cost
of inserting the input to the source. The cost function must have the form cost =
func(grapheme), where the function returns the cost of inserting grapheme into the source string.
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If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

DeleteCost — Cost to delete grapheme
1 (default) | nonnegative scalar | function handle

Cost to delete grapheme, specified as a nonnegative scalar or a function handle.

If DeleteCost is a function handle, then the function must accept a single input and return the cost
of deleting the input from the source. The cost function must have the form cost =
func(grapheme), where the function returns the cost of deleting grapheme from the source string.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

SubstituteCost — Cost to substitute grapheme
1 (default) | nonnegative scalar | function handle

Cost to substitute grapheme, specified as a nonnegative scalar or a function handle.

If SubstituteCost is a function handle, then the function must accept exactly two inputs and return
the cost of substituting the first input to the second in the source. The cost function must have the
form cost = func(graphemel, grapheme2), where the function returns the cost of substituting
graphemel with grapheme2 in the source.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

SwapCost — Cost to swap adjacent graphemes
Inf (default) | nonnegative scalar | function handle

Cost to swap adjacent graphemes, specified as a nonnegative scalar or a function handle.

If SwapCost is a function handle, then the function must accept exactly two inputs and return the
cost of swapping the first input with the second in the source. The cost function must have the form
cost = func(graphemel,grapheme2), where the function returns the cost of swapping the
adjacent graphemes graphemel and grapheme2 in the source.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
function handle

Object Functions
rangesearch Find nearest neighbors by edit distance range
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knnsearch Find nearest neighbors by edit distance

Examples

Create Edit Distance Searcher

Create an edit distance searcher with a maximum edit distance 3 from the words "MathWorks",
"MATLAB", and "Analytics".

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,3)

eds =
editDistanceSearcher with properties:
Vocabulary: ["MathWorks" "MATLAB" "Analytics"]
MaximumDistance: 3
InsertCost: 1
DeleteCost: 1
SubstituteCost: 1
I

SwapCost: Inf

Create Damerau-Levenshtein Edit Distance Searcher

Create an edit distance searcher using the Damerau-Levenshtein edit distance. The Damerau-
Levenshtein edit distance is the lowest number of insertions, deletions, substitutions, and swaps.

Create the edit distance searcher from the words "MathWorks", "MATLAB", and "Analytics" and
specify a maximum distance of 3. To specify the Damerau-Levenshtein edit distance, set ' SwapCost'
to 1.

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,3, 'SwapCost',1)

eds =
editDistanceSearcher with properties:
Vocabulary: ["MathWorks" "MATLAB" "Analytics"]
MaximumDistance: 3
InsertCost: 1
DeleteCost: 1
SubstituteCost: 1
SwapCost: 1

Find Nearest Words

Create an edit distance searcher.
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vocabulary = ["MathWorks" "MATLAB" "Simulink"];
eds = editDistanceSearcher(vocabulary,2);

Find the nearest words to "MALTAB" and "MatWorks".

words = ["MALTAB" "MatWorks"];
idx = knnsearch(eds,words)

idx = 2x1

2
1

Get the words from the vocabulary using the returned indices.
nearestWords = eds.Vocabulary(idx)

nearestWords = 1x2 string
"MATLAB" "MathWorks"

Find Nearest Neighbors in Range

Create an edit distance searcher and specify a maximum edit distance of 3.

vocabulary = ["MathWorks" "MATLAB" "Simulink" "text" "analytics" "analysis"];
maxDist = 3;
eds = editDistanceSearcher(vocabulary,maxDist);

Find the nearest words to "MALTAB" and "MatWorks" with edit distance less than or equal to 1.

words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 1;
idx = rangesearch(eds,words,maxDist)

idx=3x1 cell array
{1x0 double}
{I 11}
{I 51}

For "MALTAB", there are no words in the searcher within the specified range. For "MatWorks" and
"analytics", there is one result. View the corresponding word for "MatWorks" using the returned
index.

nearestWords = eds.Vocabulary(idx{2})

nearestWords =
"MathWorks"

Find the nearest words to "MALTAB", "MatWorks", and "analytcs" with edit distance less than or
equal to 3 and their corresponding edit distances.

words = ["MALTAB" "MatWorks" "analytcs"];
maxDist 3;
[idx,d] rangesearch(eds,words,maxDist)
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idx=3x1 cell array
{I 2]}

{I 11}
{1x2 double}

d=3x1 cell array
{I 21}
{I 11}
{1x2 double}

For both "MALTAB" and "MatWorks", there is one word in the searcher within the specified range.
For "analytcs", there are two results. View the corresponding words for "analytcs" using the
returned indices and their edit distances.

nearestWords =

nearestWords = 1Ix2 string

"analytics"

d{3}

ans = 1x2

1 2

Algorithms

Edit Distance

"analysis"

eds.Vocabulary(idx{3})

The function, by default, uses the Levenshtein distance: the lowest number of insertions, deletions,
and substitutions required to convert one string to another.

For other commonly used edit distances, use these options:

deletions, substitutions, and
swaps

Distance Description Options

Levenshtein (default) lowest number of insertions, Default
deletions, and substitutions

Damerau-Levenshtein lowest number of insertions, 'SwapCost',1

Hamming lowest number of substitutions |'InsertCost',Inf, 'Delete
only Cost',Inf

See Also

correctSpelling | editDistance | knnsearch | rangesearch | splitGraphemes |

tokenizedDocument

Topics

“Correct Spelling in Documents”
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“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”

Introduced in R2019a
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encode

Encode documents as matrix of word or n-gram counts

Syntax

counts = encode(bag,documents)

counts = encode(bag,words)
counts = encode(  ,Name,Value)
Description

Use encode to encode an array of tokenized documents as a matrix of word or n-gram counts
according to a bag-of-words or bag-of-n-grams model. To encode documents as vectors or word
indices, use a wordEncoding object.

counts = encode(bag,documents) returns a matrix of frequency counts for documents based
on the bag-of-words or bag-of-n-grams model bag.

counts = encode(bag,words) returns a matrix of frequency counts for a list of words.

counts = encode( ,Name, Value) specifies additional options using one or more name-value
pair arguments.

Examples

Encode Documents as Word Count Matrix

Encode an array of documents as a matrix of word counts.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

documents = tokenizedDocument([
"a new sentence"
"a second new sentence"])

documents =
2x1 tokenizedDocument:

3 tokens: a new sentence
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4 tokens: a second new sentence

View the documents encoded as a matrix of word counts. The word "new" does not appear in bag, so

it is not counted.

counts = encode(bag,documents);
full(counts)

ans = 2x7

0
0

[oNo]

The columns correspond to the vocabulary of the bag-of-words model.
bag.Vocabulary

ans = 1x7 string
"an" "example" "of" "a" "short" "sentence

Encode Words as Word Count Vector

Encode an array of words as a vector of word counts.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0OfWords(documents)

bag =
bagO0fWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

"second"

words = ["another" "example" "of" "a" "short" "example" "sentence"];

counts = encode(bag,words)

counts =
(1,2) 2
(1,3) 1
(1,4) 1
(1,5) 1
(1,6) 1
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Output Document Word Counts in Columns

Encode an array of documents as a matrix of word counts with documents in columns.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);
bag0OfWords (documents)

bag

bag =
bagO0fWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

documents = tokenizedDocument ([
"a new sentence"
"a second new sentence"])

documents =
2x1 tokenizedDocument:

3 tokens: a new sentence
4 tokens: a second new sentence

View the documents encoded as a matrix of word counts with documents in columns. The word "new"
does not appear in bag, so it is not counted.

counts = encode(bag,documents, 'DocumentsIn', 'columns');
full(counts)

ans = 7x2

ol Nol SN oNoNO]
HFRFOHFROOO

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors
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Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a string array or a cell array of character vectors, then it must be
a row vector representing a single document, where each element is a word.

Tip To ensure that the documents are encoded correctly, you must preprocess the input documents
using the same steps as the documents used to create the input model. For an example showing how
to create a function to preprocess text data, see “Prepare Text Data for Analysis”.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'DocumentsIn', 'rows' specifies the orientation of the output documents as rows.

DocumentsIn — Orientation of output documents
"rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Return a matrix of frequency counts with rows corresponding to documents.

* 'columns' - Return a transposed matrix of frequency counts with columns corresponding to
documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.

Data Types: logical

Output Arguments

counts — Word or n-gram counts
sparse matrix | cell array of sparse matrices

Word or n-gram counts, returned as a sparse matrix of nonnegative integers or a cell array of sparse
matrices.
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If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of sparse matrices. Each element in the cell array is matrix of word or n-gram counts of
the corresponding element of bag.

See Also
bagO0fNgrams | bag0fWords | tfidf | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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erasePunctuation

Erase punctuation from text and documents

Syntax

newStr = erasePunctuation(str)
newDocuments = erasePunctuation(documents)
newDocuments = erasePunctuation(documents, 'TokenTypes', types)

Description

newStr = erasePunctuation(str) erases punctuation and symbols from the elements of str.
The function removes characters that belong to the Unicode punctuation or symbol classes.

newDocuments = erasePunctuation(documents) erases punctuation and symbols from
documents. If a word is empty after removing punctuation and symbol characters, then the function
removes it. For tokenized document input, the function erases punctuation from tokens with type
"punctuation' and 'other'. For example, the function does not erase punctuation and symbol
characters from URLs and email addresses.

newDocuments = erasePunctuation(documents, 'TokenTypes', types) erases punctuation
and symbols from only the specified token types.

Examples

Erase Punctuation from Text

Erase the punctuation from the text in str.

str = "it's one and/or two.";
newStr = erasePunctuation(str)

newStr =
"its one andor two"

To insert a space where the "/" symbol is, first use the replace function.
newStr = replace(str,"/"," ")

newStr =
"it's one and or two."

newStr = erasePunctuation(newStr)

newStr =
"its one and or two"
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Erase Punctuation from Documents

Erase the punctuation from an array of documents.

documents = tokenizedDocument([
"An example of a short sentence."
"Another example... with a URL: https://www.mathworks.com"])

documents =
2x1 tokenizedDocument:

7 tokens: An example of a short sentence .
10 tokens: Another example . . . with a URL : https://www.mathworks.com

newDocuments = erasePunctuation(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: An example of a short sentence
6 tokens: Another example with a URL https://www.mathworks.com

Here, the function does not erase the punctuation symbols from the URL.

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

types — Token types to erase punctuation from
{'punctuation', 'other'} (default) | string array | character vector | cell array of character
vectors

Token types to erase punctuation from, specified as a character vector, string array, or a cell array of
character vectors containing one or more token types (including custom token types).

The tokenizedDocument and addTypeDetails functions automatically detect the following token
types:

* 'letters' - string of letter characters only

* 'digits' - string of digits only

* 'punctuation' - string of punctuation and symbol characters only
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*+ 'email-address' - detected email address

* 'web-address' - detected web address

* ‘'hashtag' - detected hashtag (starts with "#" character followed by a letter)

e 'at-mention' - detected at-mention (starts with "@" character)

* 'emoticon' - detected emoticon

* 'emoji' - detected emoji

* 'other' - does not belong to the previous types and is not a custom type

To specify your own custom token types when tokenizing, use the 'CustomTokens' or

'RegularExpressions' options in tokenizedDocument. If you do not specify a type for a custom
token, then the software sets the corresponding token type to 'custom'.

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

More About

Unicode Character Categories

Each Unicode character is assigned a category. The following table summarizes the Unicode
punctuation and symbol categories and provides an example character from each category:

Category Category Code Number of Characters [Example Character
Punctuation, Connector |[Pc] 10 B
Punctuation, Dash [Pd] 24 -
Punctuation, Close [Pe] 73 )
Punctuation, Final [Pf] 10 "
quote

Punctuation, Initial [Pi] 12 “
quote

Punctuation, Other [Po] 566 !
Punctuation, Open [Ps] 75 (
Symbol, Currency [Sc] 54 $
Symbol, Modifier [Sk] 121 ~
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Category Category Code Number of Characters |[Example Character
Symbol, Math [Sm] 948 +
Symbol, Other [Sol] 5855 ]

For more information, see [1].

Tips

* For string input, erasePunctuation removes punctuation characters from URLs and HTML
tags. This behavior can prevent the functions eraseTags, eraseURLs, and
decodeHTMLEntities from working as expected. If you want to use these functions to
preprocess your text, then use these functions before using erasePunctuation.

Compatibility Considerations

erasePunctuation skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, erasePunctuation, by default, erases
punctuation and symbol characters from tokens with type 'punctuation' or 'other' only. This
behavior prevents the function from affecting complex tokens such as URLs and email-addresses.

In previous versions, erasePunctuation erases punctuation characters from all tokens. To
reproduce the behavior, use the ' TokenTypes' name-value pair.

References

[1] Unicode Character Categories. https://www.fileformat.info/info/unicode/category/index.htm
See Also

decodeHTMLEntities | eraseTags | eraseURLs | lower | tokenizedDocument | upper
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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eraseTags

Erase HTML and XML tags from text

Syntax

newStr = eraseTags(str)

Description
newStr = eraseTags(str) erases HTML and XML comments and tags from the elements of str.

The function erases comments and tags with tag name a, abbr, acronym, b, bdi, bdo, big, code,
del, dfn, em, font, i, ins, kbd, mark, rp, rt, ruby, s, small, span, strike, strong sub, sup,
tt, u, var and wbr, and replaces all other tags with a space.

The function does not remove HTML and XML elements (the tags as well anything between start and
end tags). For example, eraseTags ( "x<a>y</a>") returns the string "xy". It only removes the
tags <a> and </a>, and does not remove the element <a>y</a>.

Examples

Erase HTML and XML Tags and Comments

Erase the tags from some HTML code. The function replaces the <br> tag with a space.

htmlCode = "one.<br>two";
newStr = eraseTags(htmlCode)

newStr =
"one. two"

Erase the tags from some XML code. The function removes the <sub> tags and does not replace them
with a space.

xmlCode = "H<sub>2</sub>0";
newStr = eraseTags(xmlCode)

newStr =
IIHZOII

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell
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Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseURLs | lower | tokenizedDocument | upper
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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eraseURLs

Erase HTTP and HTTPS URLs from text

Syntax

newStr = eraseURLs(str)

Description

newStr = eraseURLs(str) erases HTTP and HTTPS URLs from the elements of str.

Examples

Erase URL from Text

Erase the URL from the text in str.

str = "For more information, see https://www.mathworks.com";
newStr = eraseURLs(str)

newStr =
"For more information, see "

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | lower | tokenizedDocument | upper

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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Introduced in R2017b
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extractFileText

Read text from PDF, Microsoft Word, HTML, and plain text files

Syntax

str = extractFileText(filename)

str = extractFileText(filename,Name,Value)

Description

str = extractFileText(filename) reads the text data from a file as a string.

str = extractFileText(filename,Name,Value) specifies additional options using one or more

name-value pair arguments.

Examples

Extract Text Data from Text File

Extract the text from sonnets. txt using extractFileText. The file sonnets. txt contains
Shakespeare's sonnets in plain text.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I1");

ii = strfind(str,"II");

start = i(1);

fin = 1i(1);
extractBetween(str,start,fin-1)

ans =
"I

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.
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Extract Text Data from PDF

Extract the text from exampleSonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF file.

str = extractFileText("exampleSonnets.pdf");
View the second sonnet.

ii = strfind(str,"II");

iii = strfind(str,"III");

start = 1i(1);

fin = iii(1);
extractBetween(str,start,fin-1)

ans =
"TI

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,"
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Extract the text from pages 3, 5, and 7 of the PDF file.

pages = [3 5 7];
str = extractFileText("exampleSonnets.pdf",
'Pages',pages);

View the 10th sonnet.

X = strfind(str,"X");

xi = strfind(str,"XI");

start = x(1);

fin = xi(1);
extractBetween(str,start,fin-1)

ans =
"X

Is it for fear to wet a widow's eye,

That thou consum'st thy self in single life?
Ah! if thou issueless shalt hap to die,
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The world will wail thee like a makeless wife;
The world will be thy widow and still weep
That thou no form of thee hast left behind,
When every private widow well may keep
By children's eyes, her husband's shape in mind:
Look! what an unthrift in the world doth spend
Shifts but his place, for still the world enjoys it;
But beauty's waste hath in the world an end,
And kept unused the user so destroys it.

No love toward others in that bosom sits

That on himself such murd'rous shame commits.

X

For shame! deny that thou bear'st love to any,

Who for thy self art so unprovident.

Grant, if thou wilt, thou art belov'd of many,

But that thou none lov'st is most evident:

For thou art so possess'd with murderous hate,

That 'gainst thy self thou stick'st not to conspire,
Seeking that beauteous roof to ruinate

Which to repair should be thy chief desire.

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn)

fds =
FileDatastore with properties:
Files: {
" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne
" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne
" ...\1bC4001D\28\tp7999d2al\textanalytics-ex73762432\exampleSonne
... and 1 more
}
Folders: {
' ...\Bdoc20b 1465442 10020\1ibC4001D\28\tp7999d2al\textanalytics-e:
}
UniformRead: 0
ReadMode: 'file'
BlockSize: Inf
PreviewFcn: @extractFileText
SupportedOutputFormats: [1x16 string]
ReadFcn: @extractFileText
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AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bag0fWords

bag =
bagO0fWords with properties:
Counts: []
Vocabulary: [1x0 string]
NumWords: 0O

NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.

while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bag0fWords with properties:

Counts: [4x276 double]
Vocabulary: [1x276 string]

NumWords: 276
NumDocuments: 4

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the HTML code as
a string.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
“THE SONNETS

by William Shakespeare"

Input Arguments

filename — Name of file
string scalar | character vector
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Name of the file, specified as a string scalar or character vector.

Data Types: string | char
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ...,NameN, ValueN.

Example: 'Pages',[1 3 5] specifies to read pages 1, 3, and 5 from a PDF file.

Encoding — Character encoding
‘auto’ (default) | 'UTF-8"' | 'IS0-8859-1" | 'windows-1251" | 'windows-1252" | ...

Character encoding to use, specified as the comma-separated pair consisting of 'Encoding' and a
character vector or a string scalar. The character vector or string scalar must contain a standard
character encoding scheme name such as the following.

'Big5' 'IS0-8859-1"' 'windows-874'
'Big5-HKSCS' 'IS0-8859-2 'windows-949'
'CP949' 'IS0-8859-3' 'windows-1250"
"EUC-KR' 'IS0-8859-4' 'windows-1251"
"EUC-JP' 'IS0-8859-5' 'windows-1252"'
"EUC-TW' 'IS0-8859-6' 'windows-1253"
'GB18030' 'IS0-8859-7 'windows-1254"
'GB2312' 'IS0-8859-8' 'windows-1255"
'GBK' 'IS0-8859-9' 'windows-1256"
'IBM866 " 'IS0-8859-11" 'windows-1257"
'KOI8-R' 'IS0-8859-13"' 'windows-1258"'
'KOI8-U' 'IS0-8859-15" 'US-ASCII'

'Macintosh' "UTF-8'

'Shift JIS'

If you do not specify an encoding scheme, then the function performs heuristic auto-detection for the
encoding to use. If these heuristics fail, then you must specify one explicitly.

This option only applies when the input is a plain text file.

Data Types: char | string

ExtractionMethod — Extraction method
"tree' (default) | 'article' | 'all-text'

Extraction method, specified as the comma-separated pair consisting of 'ExtractionMethod' and

one of the following:
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Option Description

"tree' Analyze the DOM tree and text contents, then
extract a block of paragraphs.

'article’ Detect article text and extract a block of
paragraphs.

'all-text' Extract all text in the HTML body, except for

scripts and CSS styles.

This option supports HTML file input only.

Password — Password to open PDF file
character vector | string scalar

Password to open PDF file, specified as the comma-separated pair consisting of 'Password' and a
character vector or a string scalar. This option only applies if the input file is a PDE,

Example: 'Password', 'skroWhtaM'

Data Types: char | string

Pages — Pages to read from PDF file
vector of positive integers

Pages to read from PDF file, specified as the comma-separated pair consisting of 'Pages' and a
vector of positive integers. This option only applies if the input file is a PDF file. The function, by
default, reads all pages from the PDF file.

Example: 'Pages',[1 3 5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Tips

* To read text directly from HTML code, use extractHTMLText.

Compatibility Considerations

extractFileText will no longer support extracting text from Microsoft Word 97-2003
binary DOC files
Not recommended starting in R2020b

Support for extracting text from Microsoft® Word 97-2003 binary DOC files using the
extractFileText function will be removed in a future release. Microsoft Word DOCX files will
continue to be supported.

To extract text data from Microsoft Word 97-2003 binary DOC files, first save the file as a PDF,
Microsoft Word DOCX, HTML, or plain text file, then use the extractFileText function.
See Also

extractHTMLText | readPDFFormData | tokenizedDocument | writeTextDocument

Topics
“Extract Text Data from Files”
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“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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Extract text from HTML

Syntax

str = extractHTMLText (code)

str = extractHTMLText (tree)

str = extractHTMLText(  ,'ExtractionMethod',ex)

Description

str = extractHTMLText (code) parses the HTML code in code and extracts the text.

str = extractHTMLText (tree) extracts the text from an HTML tree.

str = extractHTMLText(  ,'ExtractionMethod',ex) also specifies the extraction method
to use.

Examples

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the HTML code as
a string.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
"THE SONNETS

by William Shakespeare"

Extract Text from Website

To extract the text data from a web page, first use the webread function to read the HTML code.
Then use the extractHTMLText function on the returned code.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText (code)

str =
'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing

Text Analytics Toolbox includes tools for processing raw text from sources such as equipmen

Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clust
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Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector
subtrees

IIAII;
findElement(tree,selector);

View the first few subtrees.
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg_link navbar-brand" href="https://www.mathworks.com?s tid=gn_ logo"><IMG alt="Ma
<A href="https://www.mathworks.com/products.html?s tid=gn_ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn_supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s_ tid=gn_mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s_ tid=gn_cntus">Contact U
<A href="https://www.mathworks.com/products/get-matlab.html?s tid=gn_getml">Get MATLAB</A>
<A class="svg_link pull-left" href="https://www.mathworks.com?s tid=gn_logo"><IMG alt="MathW

Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10x1 string

"Products"
"Solutions"
"Academia"
“Support"
“Community"
"Events"
“Contact Us"
"Get MATLAB"
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Input Arguments

code — HTML code
string array | character vector | cell array of character vectors

HTML code, specified as a string array, a character vector, or a cell array of character vectors.

Tip
* Toread HTML code from a web page, use webread.
* To extract text from an HTML file, use extractFileText.

Example: "<a href='https://www.mathworks.com'>MathWorks</a>"

Data Types: char | string | cell

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

ex — Extraction method
"tree' (default) | 'article' | 'all-text'

Extraction method, specified as one of the following:

Option Description

"tree' Analyze the DOM tree and text contents, then
extract a block of paragraphs.

'article' Detect article text and extract a block of
paragraphs.

'all-text' Extract all text in the HTML body, except for

scripts and CSS styles.

See Also
extractFileText | htmlTree | readPDFFormData | tokenizedDocument | webread |
writeTextDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2018a
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extractSummary

Extract summary from documents

Syntax

summary = extractSummary(documents)
[summary,scores] = extractSummary(documents)
[summary,scores] = extractSummary(documents,Name,Value)

Description

summary = extractSummary(documents) chooses a subset of the input documents to serve as a
summary, and returns them as a tokenizedDocument array.

[summary,scores] = extractSummary(documents) also returns the importance scores used for
selecting the summary documents. In this case, scores (i) represents the score for summary(i).

[summary,scores] = extractSummary(documents,Name,Value) specifies additional options
using one or more name-value pair arguments.

Examples

Summarize Documents

Create an array of tokenized documents.
str = [
"The quick brown fox jumped over the lazy dog."
"The fox jumped over the dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping other animals."

"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);

Extract a summary of the documents using the extractSummary function. The function, by default,
chooses 1/10 of the input documents, rounding up.

summary = extractSummary(documents)

summary =
tokenizedDocument:

10 tokens: The quick brown fox jumped over the lazy dog .

To specify a larger summary, use the 'SummarySize' option. Extract a three-document summary.
summary = extractSummary(documents, 'SummarySize',3)

summary =
3x1 tokenizedDocument:
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10 tokens: The quick brown fox jumped over the lazy dog
7 tokens: The fox jumped over the dog
9 tokens: There seem to be animals jumping other animals

Evaluate Document Importance

Create an array of tokenized documents.

str = [
"The quick brown fox jumped over the lazy dog."
"The fox jumped over the dog."
"The lazy dog saw a fox jumping."
"There seem to be animals jumping over other animals."
"There are quick animals and lazy animals"];
documents = tokenizedDocument(str);

Extract a three-document summary. The second output scores contains the summary document
importance scores.

[summary,scores] = extractSummary(documents, 'SummarySize',3)

summary =
3x1 tokenizedDocument:

10 tokens: The quick brown fox jumped over the lazy dog
10 tokens: There seem to be animals jumping over other animals
7 tokens: The fox jumped over the dog

scores = 3x1

0.2426
0.2174
0.1911

Visualize the scores in a bar chart.

figure

bar(scores)

xLlabel("Summary Document")
ylabel("Score")

title("Summary Document Importance")
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Summary Document Importance
0.25 . . .

0.2

Score

0.1

0.05

1 2 3
Summary Document

Sentence Level Summarization

To summarize a single document, split the document into an array of sentences, and use the
extractSummary function.

Create a string scalar containing the document.

str = ...
"There is a quick fox. The fox is brown. There is a dog which " + ...
"is lazy. The dog is very lazy. The fox jumped over the dog. " + ...
"The quick brown fox jumped over the lazy dog.";

Split the string into sentences using the splitSentences function.

str splitSentences(str)

str = 6x1 string
"There is a quick fox."
"The fox is brown."
"There is a dog which is lazy."
"The dog is very lazy."
"The fox jumped over the dog."
"The quick brown fox jumped over the lazy dog."
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Create a tokenized document array containing the sentences.

documents

tokenizedDocument (str)

documents =
6x1 tokenizedDocument:

6 tokens: There is a quick fox .

5 tokens: The fox 1is brown

8 tokens: There is a dog which is lazy .

6 tokens: The dog is very lazy .

7 tokens: The fox jumped over the dog

10 tokens: The quick brown fox jumped over the lazy dog

Extract a summary from the sentences using the extractSummary function. To return a summary
withthree documents, set the 'SummarySize' option to 3.To ensure the summary documents appear
in the same order as the input documents, set the 'OrderBy' option to 'position’.

summary = extractSummary(documents, 'SummarySize',3,'OrderBy', 'position')

summary =
3x1 tokenizedDocument:

6 tokens: There is a quick fox .

7 tokens: The fox jumped over the dog
10 tokens: The quick brown fox jumped over the lazy dog

To reconstruct the sentences into a single document, convert the documents to string using the
joinWords function and join the sentences using the join function.

sentences = joinWords(summary) ;
summaryStr = join(sentences)

summaryStr =
"There is a quick fox . The fox jumped over the dog . The quick brown fox jumped over the lazy d

To remove the surrounding punctuation characters, use the replace function.

punctuationRight = [II-II II’II nrn II)II II:II II?II n ! II] ;

summaryStr = replace(summaryStr," " + punctuationRight,punctuationRight);
punctuationLeft = ["(" "‘"];

summaryStr = replace(summaryStr,punctuationLeft + " ",punctuationLeft)

summaryStr =
"There is a quick fox. The fox jumped over the dog. The quick brown fox jumped over the lazy dog

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ...,NameN,ValueN.

Example: extractSummary(documents, 'ScoringMethod', ' lexrank') extracts a summary
from documents and sets the scoring method option to ' lexrank'.

ScoringMethod — Scoring method
"textrank' (default) | 'lexrank' | "mmr'

Scoring method used for extractive summarization, specified as the comma-separated pair consisting
of 'ScoringMethod' and one of the following:

* ‘'textrank' - Use the TextRank algorithm.

* ‘'lexrank' - Use the LexRank algorithm.

 'mmr' - Use the MMR algorithm.

Query — Query document for MMR scoring
tokenizedDocument scalar | string array | cell array of character vectors

Query document for MMR scoring, specified as the comma-separated pair consisting of 'Query' and
a tokenizedDocument scalar, a string array of words, or a cell array of character vectors. If
"Query' not a tokenizedDocument scalar, then it must be a row vector representing a single
document, where each element is a word.

This option only has an effect when 'ScoringMethod' is 'mmr"'.

SummarySize — Size of summary
0.1 (default) | scalar in the range (0,1) | positive integer | Inf

Size of summary, specified as the comma-separated pair consisting of 'SummarySize' and one of the
following:

* Scalar in the range (0,1) - Extract the specified proportion of input documents, rounding up. In
this case, the number of summary documents ceil (SummarySize*numDocuments), where
numDocuments is the number of input documents.

» Positive integer - Extract a summary with the specified number of documents. If SummarySize is
greater than or equal to the number of input documents, then the function returns the input
documents sorted according to the 'OrderBy' option.

Inf - Return the input documents sorted according to the 'OrderBy' option.
Data Types: double

OrderBy — Order of documents in summary
'score' (default) | 'position'

Order of documents in summary, specified as the comma-separated pair consisting of 'OrderBy' and
one of the following:

* 'score' - Order documents by their score according to the 'ScoringMethod' option.
* 'position' - Maintain the document order from the input.
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Output Arguments

summary — Extracted summary
tokenizedDocument array

Extracted summary, returned as a tokenizedDocument array. The summary is a subset of
documents, and is sorted according to the 'OrderBy' option.

scores — Summary document scores
vector

Summary document scores, returned as a vector, where scores (i) is the score of the jth summary
document according to the 'ScoringMethod' option. The scores are sorted according to the
'OrderBy' option.

See Also

bleuEvaluationScore | bm25Similarity | cosineSimilarity | lexrankScores | mmrScores
| rakeKeywords | rougeEvaluationScore | textrankKeywords | textrankScores |
tokenizedDocument

Topics

“Extract Keywords from Text Data Using TextRank”
“Extract Keywords from Text Data Using RAKE”
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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fastTextWordEmbedding

Pretrained fastText word embedding

Syntax

emb = fastTextWordEmbedding

Description

emb = fastTextWordEmbedding returns a 300-dimensional pretrained word embedding for 1
million English words.

This function requires the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, the function provides a
download link.

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package.

Type fastTextWordEmbedding at the command line.
fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support
package is not installed, then the function provides a link to the required support package in the Add-
On Explorer. To install the support package, click the link, and then click Install. Check that the
installation is successful by typing emb = fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding
emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

If the required support package is installed, then the function returns a wordEmbedding object.

Map Words to Vectors and Back
Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text

Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.
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emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb, "Rome");
paris = word2vec(emb, "Paris");

Map the vector italy - rome + paris to a word using vec2word.
word = vec2word(emb,italy - rome + paris)

word =
"France"

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection’
option to 'none’. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents, 'PaddingDirection', 'none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)
ans=10x1 cell array

{300x10 single}
{300x11 single}
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{300x11 single}
{300x6 single}
{300x5 single}
{300x10 single}
{300x8 single}
{300x9 single}
{300x7 single}
{300x13 single}

Output Arguments

emb — Pretrained word embedding
wordEmbedding object

Pretrained word embedding, returned as a wordEmbedding object.

See Also

doc2sequence | isVocabularyWord | readWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbedding | wordEmbeddinglLayer |
wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018a
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findElement

Find elements in HTML tree

Syntax

subtrees = findElement(tree,selector)

Description

subtrees = findElement(tree,selector) returns the elements in tree matching the CSS
selector.

Examples

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector
subtrees

IIAII ;
findElement(tree,selector);

View the first few subtrees.
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg_link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="Ma
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn_ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus">Contact U
<A href="https://www.mathworks.com/products/get-matlab.html?s tid=gn getml">Get MATLAB</A>
<A class="svg link pull-left" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="MathW



findElement

Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10x1 string

"Products"
"Solutions"
"Academia"
“Support"
"Community"
"Events"
"Contact Us"
"Get MATLAB"

Input Arguments

tree — HTML tree
scalar htmlTree object

HTML tree, specified as a scalar htmlTree object.

selector — CSS selector
string scalar | character vector

CSS selector, specified as a string scalar or a character vector. For more information, see “CSS
Selectors” on page 1-150.

Output Arguments

subtrees — Matching HTML subtrees
htmlTree array

Matching HTML subtrees, returned as an htmlTree array.

More About
HTML Elements

A typical HTML element contains the following components:

* Element name - Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

* Attributes - Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

* Content - Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,

1-149



1 Functions

1-150

use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the

Children property.

For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises

the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference
Attribute value "https:// Hyperlink reference
www .mathworks.com" |value
Content Home Text to display

CSS Selectors

CSS selectors specify patterns to match elements in a tree.

This table shows some examples showing how to extract different HTML elements from an HTML

tree:

Task

CSS Selector

Example

elements that are inside table
(<table>) elements.

Find all paragraph (<p>) ‘p" findElement (tree,"p")
elements.

Find all paragraph (<p>) and "p,li" findElement(tree,"p,1i")
list item (<1i>) elements.

Find all paragraph (<p>) "table p" findElement(tree, "table

p")

Find all hyperlink (<a>)
elements with hyperlink
reference attribute (href)
values ending with " .pdf".

Ila[href$=ll n . pdfll II] n

findElement (tree, "al[href
$=II n . pdfll n ] II)

Find all paragraph (<p>)
elements that are the first child
of their parent.

"p:first-child"

findElement (tr,"p:first-
child")

Find all paragraph (<p>)
elements that are the first
paragraph element of their
parent.

"p:first-of-type"

findElement(tr,"p:first-
of-type")

Find all emphasis (<em>)
elements where the parent is a
paragraph (<p>) element.

||p > em"

findElement(tr,"p > em")

Find all paragraph (<p>)
elements appearing immediately
after a heading 1 (<h1>)
element

Ilhl + pll

findElement(tr,"hl + p")

Find all empty elements.

“rempty"

findElement(tr,":empty")
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Task

CSS Selector

Example

Find all nonempty label
(<label>) elements.

"label:not(:empty)"

findElement (tr, "label:no
t(:empty)")

The findElement function supports all of CSS level 3, except for the selectors ":1lang",
":checked", ":1ink", ":active", ":hover", ":focus", ":target", ":enabled", and

":disabled".

For more information about CSS selectors, see [1].

References

[1]1 CSS Selector Reference. https://www.w3schools.com/cssref/css_selectors.asp

See Also

extractFileText | extractHTMLText | getAttribute | htmlTree | ismissing |
readPDFFormData | tokenizedDocument

Topics

“Parse HTML and Extract Text Content”

“Extract Text Data from Files”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2018b
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fitlda

Fit latent Dirichlet allocation (LDA) model

Syntax

md1l
md1l
md1l

fitlda(bag,numTopics)
fitlda(counts,numTopics)
fitlda( ,Name, Value)

Description

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. If the model was fit using a bag-of-n-
grams model, then the software treats the n-grams as individual words.

mdl = fitlda(bag,numTopics) fits an LDA model with numTopics topics to the bag-of-words or
bag-of-n-grams model bag.

mdl = fitlda(counts,numTopics) fits an LDA model to the documents represented by a matrix
of frequency counts.

mdl = fitlda( ,Name, Value) specifies additional options using one or more name-value pair
arguments.

Examples

Fit LDA Model

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag bagOfWords (documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
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Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)

Initial topic assignments samp

led in 0.16731 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
[ | (seconds) | log(L) | | iterations |
| 0 | 0.01 | | 1.215e+03 | 1.000 | 0 |
| 1 | 0.02 | 1.0482e-02 | 1.128e+03 | 1.000 | 0 |
| 2 | 0.02 | 1.7190e-03 | 1.115e+03 | 1.000 | 0 |
| 3 0.02 | 4.3796e-04 | 1.118e+03 | 1.000 | 0 |
| 4 | 0.02 | 9.4193e-04 | 1.111e+03 | 1.000 | 0 |
| 5 | 0.03 | 3.7079%e-04 | 1.108e+03 | 1.000 | 0 |
| 6 | 0.02 | 9.5777e-05 | 1.107e+03 | 1.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 4
WordConcentration: 1
TopicConcentration: 1

CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:

TopicOrder:

FitInfo:

[0.2500 0.2500 0.2500 0.2500]
[154x4 double]

[3092x4 double]

[1x3092 string]
"initial-fit-probability'
[1x1 struct]

Visualize the topics using word clouds.

figure

for topicldx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic: " + topicldx

end

)
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Fit LDA Model to Word Count Matrix
Fit an LDA model to a collection of documents represented by a word count matrix.

To reproduce the results of this example, set rng to 'default’.

rng('default"')

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets. The value counts (i, j) corresponds
to the number of times the jth word of the vocabulary appears in the ith document.

load sonnetsCounts.mat
size(counts)

ans = 1x2

154 3092
Fit an LDA model with 7 topics. To suppress the verbose output, set 'Verbose' to 0.

numTopics = 7;
mdl = fitlda(counts,numTopics, 'Verbose',0Q);
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Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of the first
three input documents.

topicMixtures = transform(mdl,counts(1:3,:));

figure

barh(topicMixtures, 'stacked")

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic "+ string(l:numTopics), 'Location', 'northeastoutside")

Topic Mixtures

I Topic 1
N Topic 2
[ dTopic 3
I Topic 4
T Topic 5
[ Topic &
I Topic 7

Cocument

0 0.2 0.4 0.6 0.8 1
Topic Probability

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Create a bag-of-wo

bag = bag0fWords
bag =
bagOfWords wit
Counts:
Vocabulary:
NumWords:
NumDocuments:

rds model using bagOfWords.

(documents)

h properties:

[154x3092 double]
[1x3092 string]
3092

154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag

Initial topic as

,numTopics)

signments sampled in 0.0932688 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.38 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.09 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.12 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3] 0.18 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.15 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 ] 0.09 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.19 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =
ldaModel with properties:

Wor

Topi
CorpusTopi
DocumentTopi
TopicWor

NumTopics: 20
dConcentration: 1
cConcentration: 5

cProbabilities: [1x20 double]

cProbabilities: [154x20 double]

dProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'

FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = t

"what's in a name? a rose by any other name would smell as sweet."

okenizedDocument ([

"if music be the food of love, play on."]);

topicIdx = predi
topicIdx = 2x1

19
8

ct(mdl, newDocuments)
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Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))

Topic 19
assund g, .,
haavanly

~ treasure

o5 |1'r_1ll1arb ,“ 2

purpose ag |1.|;|11aa
peets  [1EVE[ v ain

waw fEATS farraﬂk %

ﬁgjace orant_

Eross o

: dare )
rapair WO r wWaEp

= thought =

account namme - _

" grave need .

sha me

tongues touches
BT a98s maan

sk

wandar

Input Arguments

bag — Input model
bagO0fWords object | bag0OfNgrams object
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Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.

numTopics — Number of topics
positive integer

Number of topics, specified as a positive integer. For an example showing how to choose the number
of topics, see “Choose Number of Topics for LDA Model”.

Example: 200
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts (i, j) corresponds to the number of times the

jth word of the vocabulary appears in the ith document. Otherwise, the value counts (i, j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Solver', "avb' specifies to use approximate variational Bayes as the solver.
Solver Options

Solver — Solver for optimization
'cgs' (default) | 'savb' | "avb' | 'cvb0'

Solver for optimization, specified as the comma-separated pair consisting of 'Solver' and one of the
following:

Stochastic Solver

* 'savb' - Use stochastic approximate variational Bayes [1] [2]. This solver is best suited for large
datasets and can fit a good model in fewer passes of the data.

Batch Solvers
* 'cgs' - Use collapsed Gibbs sampling [3]. This solver can be more accurate at the cost of taking

longer to run. The resume function does not support models fitted with CGS.

* 'avb' - Use approximate variational Bayes [4]. This solver typically runs more quickly than
collapsed Gibbs sampling and collapsed variational Bayes, but can be less accurate.

e 'cvb0O' - Use collapsed variational Bayes, zeroth order [4] [5]. This solver can be more accurate
than approximate variational Bayes at the cost of taking longer to run.

For an example showing how to compare solvers, see “Compare LDA Solvers”.

Example: 'Solver', 'savb'’

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
"LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

FitTopicProbabilities — Option for fitting corpus topic probabilities
true (default) | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.
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The function fits the Dirichlet prior a = ag(p1 P2 - Pk) on the topic mixtures, where g is the topic
concentration and py, ..., px are the corpus topic probabilities which sum to 1.

Example: 'FitTopicProbabilities', false

Data Types: logical

FitTopicConcentration — Option for fitting topic concentration
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

For batch the solvers 'cgs', 'avb', and 'cvb0', the default for FitTopicConcentrationis true.
For the stochastic solver 'savb', the default is false.

The function fits the Dirichlet prior a = ag(p1 P2 - Pk) on the topic mixtures, where g is the topic
concentration and py, ..., px are the corpus topic probabilities which sum to 1.

Example: 'FitTopicConcentration', false
Data Types: logical

InitialTopicConcentration — Initial estimate of the topic concentration
numTopics/4 (default) | nonnegative scalar

Initial estimate of the topic concentration, specified as the comma-separated pair consisting of
'"InitialTopicConcentration' and a nonnegative scalar. The function sets the concentration per
topic to TopicConcentration/NumTopics. For more information, see “Latent Dirichlet Allocation”
on page 1-162.

Example: 'InitialTopicConcentration', 25

TopicOrder — Topic Order
"initial-fit-probability' (default) | 'unordered’

Topic order, specified as one of the following:

 'initial-fit-probability' - Sort the topics by the corpus topic probabilities of input
document set (the CorpusTopicProbabilities property).

* 'unordered' - Do not sort the topics.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as the comma-separated pair consisting of 'WordConcentration’
and a nonnegative scalar. The software sets the Dirichlet prior on the topics (the word probabilities
per topic) to be the symmetric Dirichlet distribution parameter with the value WordConcentration/
numWords, where numWords is the vocabulary size of the input documents. For more information, see
“Latent Dirichlet Allocation” on page 1-162.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:
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* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

This option supports batch solvers only (' cgs', 'avb', or 'cvb0').

Example: 'IterationLimit', 200
Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair consisting of
'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit’, then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit’ and 'MiniBatchLimit’,
then fitlda uses the argument that results in processing the fewest observations.

This option supports only the stochastic (' savb') solver.

Example: 'DataPassLimit’',?2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting of
'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit’, then fitlda ignores the default
value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and 'DataPassLimit’', then
fitlda uses the argument that results in processing the fewest observations. The default value is
ceil(numDocuments/MiniBatchSize), where numDocuments is the number of input documents.

This option supports only the stochastic (' savb') solver.
Example: '"MiniBatchLimit', 200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer
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Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit' and a
positive integer. The function processes MiniBatchSize documents in each iteration.

This option supports only the stochastic (' savb') solver.

Example: 'MiniBatchSize',512

LearnRateDecay — Learning rate decay
0.5 (default) | positive scalar less than or equal to 1

Learning rate decay, specified as the comma-separated pair 'LearnRateDecay' and a positive
scalar less than or equal to 1.

For mini-batch t, the function sets the learning rate to n(t) = 1/(1 + t), where k is the learning rate
decay.

If LearnRateDecay is close to 1, then the learning rate decays faster and the model learns mostly
from the earlier mini-batches. If LearnRateDecay is close to 0, then the learning rate decays slower
and the model continues to learn from more mini-batches. For more information, see “Stochastic
Solver” on page 1-163.

This option supports the stochastic solver only (' savb').
Example: 'LearnRateDecay',0.75

Display Options

ValidationData — Validation data
[1 (default) | bagOfWords object | bag0OTfNgrams object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated pair
consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object, or a sparse
matrix of word counts. If the validation data is a matrix, then the data must have the same orientation
and the same number of words as the input documents.

ValidationFrequency — Frequency of model validation
positive integer

Frequency of model validation in number of iterations, specified as the comma-separated pair
consisting of 'ValidationFrequency' and a positive integer.

The default value depends on the solver used to fit the model. For the stochastic solver, the default
value is 10. For the other solvers, the default value is 1.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

* 0 - Do not display verbose output.
* 1 - Display progress information.

Example: 'Verbose',0
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Output Arguments

mdl — Output LDA model
ldaMode'l object

Output LDA model, returned as an LdaModel object.

More About

Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers underlying topics
in a collection of documents and infers word probabilities in topics. LDA models a collection of D
documents as topic mixtures 04, ..., 8p, over K topics characterized by vectors of word probabilities

@1, ..., . The model assumes that the topic mixtures 0, ..., 8p, and the topics ¢, ..., px follow a
Dirichlet distribution with concentration parameters a and f respectively.

The topic mixtures 8y, ..., p are probability vectors of length K, where K is the number of topics. The
entry 8y; is the probability of topic i appearing in the dth document. The topic mixtures correspond to
the rows of the DocumentTopicProbabilities property of the ldaModel object.

The topics ¢, ..., @k are probability vectors of length V, where V is the number of words in the
vocabulary. The entry ¢;, corresponds to the probability of the vth word of the vocabulary appearing
in the ith topic. The topics @i, ..., @x correspond to the columns of the TopicWordProbabilities
property of the LTdaModel object.

Given the topics ¢y, ..., g and Dirichlet prior a on the topic mixtures, LDA assumes the following
generative process for a document:

1 Sample a topic mixture 6~Dirichlet(a). The random variable 0 is a probability vector of length K,
where K is the number of topics.

2 For each word in the document:

a Sample a topic index z—Categorical(f). The random variable z is an integer from 1 through
K, where K is the number of topics.
b  Sample a word w~Categorical(¢,). The random variable w is an integer from 1 through V,

where V is the number of words in the vocabulary, and represents the corresponding word in
the vocabulary.

Under this generative process, the joint distribution of a document with words wy, ..., wy, with topic
mixture 6, and with topic indices z1, ..., 2y is given by

N
p6,z,w|a ¢) =p@|a) [] p

n=1

0)p(wn |zn, @),

where N is the number of words in the document. Summing the joint distribution over z and then
integrating over 6 yields the marginal distribution of a document w:

a,¢) = éfp(e

p(w

N
a) Hl > p(2n|0)p(wn |2y, @)d6 .
n=12z
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The following diagram illustrates the LDA model as a probabilistic graphical model. Shaded nodes are
observed variables, unshaded nodes are latent variables, nodes without outlines are the model
parameters. The arrows highlight dependencies between random variables and the plates indicate
repeated nodes.
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Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution. Given the
number of categories K = 2, and concentration parameter a, where a is a vector of positive reals of
length K, the probability density function of the Dirichlet distribution is given by

K

p(9|a)=ﬁl_[9f"_1,

i=1
where B denotes the multivariate Beta function given by

K
. re

B(a) =

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The symmetric
Dirichlet distribution is characterized by the concentration parameter a, where all the elements of a
are the same.

Stochastic Solver
The stochastic solver processes documents in mini-batches. It updates the per-topic word

probabilities using a weighted sum of the probabilities calculated from each mini-batch, and the
probabilities from all previous mini-batches.

1-163



1 Functions

1-164

For mini-batch t, the solver sets the learning rate to n(t) = 1/(1 + t), where x is the learning rate
decay.

The function uses the learning rate decay to update @, the matrix of word probabilities per topic, by
setting

o = (1 - e~V + npye”),

where ™) is the matrix learned from mini-batch t, and o~V is the matrix learned from mini-
batches 1 through t-1.

Before learning begins (when t = 0), the function initializes the initial word probabilities per topic
@ with random values.

Compatibility Considerations

fitlda sorts topics
Behavior changed in R2018b

Starting in R2018b, fitlda, by default, sorts the topics in descending order of the topic probabilities
of the input document set. This behavior makes it easier to find the topics with the highest
probabilities.

In previous versions, fitlda does not change the topic order. To reproduce the behavior, set the
'TopicOrder' optionto 'unordered’.
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See Also
bagOfNgrams | bag0fWords | fitlsa | LldaModel | logp | LsaModel | predict | resume |
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Topics
“Analyze Text Data Using Topic Models”

“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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fitlsa

Fit LSA model

Syntax

mdl = fitlsa(bag,numComponents)
mdl = fitlsa(counts,numComponents)
mdl = fitlsa(  ,Name,Value)
Description

A latent semantic analysis (LSA) model discovers relationships between documents and the words
that they contain. An LSA model is a dimensionality reduction tool useful for running low-dimensional
statistical models on high-dimensional word counts. If the model was fit using a bag-of-n-grams
model, then the software treats the n-grams as individual words.

mdl = fitlsa(bag,numComponents) fits an LSA model with numComponents components to the
bag-of-words or bag-of-n-grams model bag.

mdl = fitlsa(counts,numComponents) fits an LSA model to the documents represented by the
matrix of word counts counts.

mdl = fitlsa( ,Name, Value) specifies additional options using one or more name-value pair
arguments.

Examples

Fit LSA Model
Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bag0fWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
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NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl =
lsaModel with properties:

NumComponents: 20
ComponentWeights: [1x20 double]
DocumentScores: [154x20 double]
WordScores: [3092x20 double]
Vocabulary: [1x3092 string]
FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

dscores = transform(mdl,newDocuments)

dscores = 2x20

0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 -0.0205 -0.1127
0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 0.0522 0.0690

Fit LSA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts corresponding to
preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit LSA model with 20 components. Set the feature strength exponent to 4.

numComponents = 20;

exponent = 4;

mdl = fitlsa(counts,numComponents,
'FeatureStrengthExponent',exponent)

mdl =
lsaModel with properties:
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NumComponents: 20
ComponentWeights: [1x20 double]
DocumentScores: [154x20 double]
WordScores: [3092x20 double]
Vocabulary: [1x3092 string]
FeatureStrengthExponent: 4

Input Arguments

bag — Input model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

numComponents — Number of components
positive integer

Number of components, specified as a positive integer. This value must be less than the number of
the input documents, and the vocabulary size of the input documents.
Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts (i, j) corresponds to the number of times the

Jjth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'FeatureStrengthExponent',4 sets the feature strength exponent to 4.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.
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Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

FeatureStrengthExponent — Initial feature strength exponent
2 (default) | nonnegative scalar

Initial feature strength exponent, specified as a nonnegative scalar. This value scales the feature
component strengths for the documentScores, wordScores, and transform functions.

Example: 'FeatureStrengthExponent', 4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

mdl — Output LSA model
lsaModel object

Output LSA model, returned as an 1saModel object.

See Also
bagOfNgrams | bag0OfWords | fitlda | ldaModel | LsaModel | transform

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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getAttribute

Read HTML attribute of root node of HTML tree

Syntax

str = getAttribute(tree,attr)

Description

str = getAttribute(tree,attr) returns the attribute attr of the root node of tree. If that
attribute is not set, then the function returns a missing value.

Examples

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the nodes with
element name "A".

selector "A";
subtrees findElement(tree,selector);
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg_link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="Ma
<A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn _ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus">Contact U
<A href="https://www.mathworks.com/store?s cid=store top nav&amp;s tid=gn store">How to Buyx<,

Get the hyperlink references using getAttribute. Specify the attribute name "href".
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attr = "href";
str = getAttribute(subtrees,attr);

str(1:10)

ans = 10x1

"https:
"https:
"https:
"https:
"https:
"https:
"https:
"https:
"https:
"https:

string array

//wWww .
//wWww .
//wWww .
//wWww .
//wWww .
//wWww .
//wWww .
//wWww .
//wWww .
//wWww .

mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.

Input Arguments

tree — HTML tree

htmlTree array

com?s tid=gn logo"

com/login?uri=http://www.mathworks.com/help/textanalytics/index

com/products.html?s tid=gn ps"

com/solutions.html?s tid=gn sol"
com/academia.html?s tid=gn_acad"

com/support.html?s tid=gn supp"
com/matlabcentral/?s tid=gn mlc"
com/company/events.html?s tid=gn ev"
com/company/aboutus/contact us.html?s tid=gn cntus"
com/store?s cid=store top nav&s tid=gn_store"

HTML tree, specified as an htmlTree array.

attr — Attribute name
string scalar | character vector | scalar cell array containing a character vector

Attribute name, specified as a string scalar, character vector, or a scalar cell array containing a

character vector.

Output Arguments

str — HTML attribute

string array

HTML attribute, returned as a string array

More About

HTML Elements

A typical HTML element contains the following components:

* FElement name - Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

» Attributes - Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

* Content - Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,

use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the

Children property.
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For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises
the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference
Attribute value "https:// Hyperlink reference
www .mathworks.com" |value
Content Home Text to display
See Also

extractFileText | extractHTMLText | findElement | htmlTree | ismissing |
readPDFFormData | tokenizedDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2018b
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htmiTree

Parsed HTML tree

Description

An htmlTree object represents a parsed HTML element or node. Extract parts of interest using the
findElement function or the Children property, and extract text using the extractHTMLText
function.

Creation

Syntax
tree = htmlTree(code)
Description

tree = htmlTree(code) parses the HTML code in the string code and returns the resulting tree
structure.

Input Arguments

code — HTML code
string array | character vector | cell array of character vectors

HTML code, specified as a string array, a character vector, or a cell array of character vectors.

Tip
* Toread HTML code from a web page, use webread.
* To extract text from an HTML file, use extractFileText.

Example: "<a href="https://www.mathworks.com'>MathWorks</a>"

Data Types: char | string | cell

Properties

Children — Direct descendants of element
htmlTree array

Direct descendants of the element, specified as an htmlTree array.

Parent — Parent node
htmlTree object
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Parent node in the tree, specified as an htmlTree object.
If the HTML tree is a root node, then the value of Parent ismissing.

Name — HTML element name
string scalar

HTML element name, specified as a string scalar.

For more information, see “HTML Elements” on page 1-177.

Object Functions

findElement Find elements in HTML tree

getAttribute Read HTML attribute of root node of HTML tree
extractHTMLText Extract text from HTML

ismissing Find HTML trees without values

Examples

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);
View the element name of the root node of the tree.

tree.Name

ans =
“HTML"

View the children of the root node.
tree.Children

ans =
4x1 htmlTree:

<HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charset="utf-8"/><META conten

<BODY id="responsive offcanvas"><!-- Mobile TopNav: Start --><DIV class="header visible-xs v.

Extract the text from the HTML tree using extractHTMLText.

str = extractHTMLText(tree)
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str =
"Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing

Text Analytics Toolbox includes tools for processing raw text from sources such as equipmen

Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clust

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector
subtrees

IIAII ;
findElement(tree,selector);

View the first few subtrees.
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg_link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="Ma
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn_ supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn_ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus">Contact U
<A href="https://www.mathworks.com/products/get-matlab.html?s tid=gn getml">Get MATLAB</A>
<A class="svg _link pull-left" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="MathW

Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10x1 string

"Products"
"Solutions"
"Academia"
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"Support"
"Community"
"Events"”
“Contact Us"
"Get MATLAB"

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the nodes with
element name "A".

selector "A";
subtrees findElement(tree,selector);
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="Mar
<A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/|
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus">Contact U
<A href="https://www.mathworks.com/store?s cid=store top nav&amp;s tid=gn store">How to Buy<,

Get the hyperlink references using getAttribute. Specify the attribute name "href".

attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10x1 string array
"https://www.mathworks.com?s tid=gn logo"
"https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html"
"https://www.mathworks.com/products.html?s tid=gn ps"
"https://www.mathworks.com/solutions.html?s tid=gn sol"
"https://www.mathworks.com/academia.html?s tid=gn acad"
"https://www.mathworks.com/support.html?s tid=gn supp"
"https://www.mathworks.com/matlabcentral/?s tid=gn mlc"
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"https://www.mathworks.com/company/events.html?s tid=gn ev"
"https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus"
"https://www.mathworks.com/store?s cid=store top nav&s tid=gn store"

More About

HTML Elements

A typical HTML element contains the following components:

* FElement name - Name of the HTML tag. The element name corresponds to the Name property of

the HTML tree.

» Attributes - Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

* Content - Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the

Children property.

For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises

the following components:

Component Value Description

Element name a Element is a hyperlink

Attribute Attribute name href Hyperlink reference
Attribute value "https:// Hyperlink reference

www.mathworks.com" |value

Content Home Text to display

See Also

extractHTMLText | findElement | getAttribute | ismissing | readPDFFormData |

tokenizedDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification’

J
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ind2word

Map encoding index to word

Syntax

words

Desc

words

= ind2word(enc,M)

ription

= ind2word(enc,M) returns the words corresponding to the encoding indices in M
according to the word encoding enc.

Examples

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

documents(1:10)

ans =
10x1

70
71
65
71
61
68
64
70
70
69

tokenizedDocument:

tokens: fairest creatures desire increase thereby beautys rose might never die riper time
tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
tokens: look thy glass tell face thou viewest time face form another whose fresh repair tl
tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial
tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art beld

Create a word encoding.

enc =

enc =

wordEncoding(documents)

wordEncoding with properties:

Vo

NumWords:
cabulary:

3092
[1x3092 string]
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View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)

words = 1x3 string
"fairest" "desire" "thereby"

Input Arguments

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

M — Word encoding indices
vector of positive integers

Word encoding indices, specified as a vector of positive integers.

Output Arguments

words — Output words
string vector

Output words, returned as a string vector.

See Also
doc2sequence | fastTextWordEmbedding | isVocabularyWord | tokenizedDocument |
vec2word | word2ind | wordEmbedding | wordEmbeddinglLayer | wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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ismember

(To be removed) Test if word is member of word embedding

Note ismember will be removed in a future release. Use isVocabularyWord instead. For more
information, see “Compatibility Considerations”.

Syntax

tf = ismember(emb,words)

Description

tf = ismember(emb,words) returns an array containing logical 1 (true) where the word in
words is a member of the word embedding emb. Elsewhere, the array contains logical 0 (false).

Examples

Test If Word Is Member of Embedding
Test to determine if words are members of a word embedding.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = ismember(emb,words)

tf =
1x3 logical array

1 1 0

Input Arguments

emb — Input word embedding
wordEmbedding object
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Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

Compatibility Considerations

ismember will be removed
Warns starting in R2018b

To update your code, for wordEmbedding object input, change the function name from ismember to
isVocabularyWord. You do not need to change the arguments. The syntaxes are equivalent.

See Also
fastTextWordEmbedding | isVocabularyWord | tokenizedDocument | vec2word | word2vec |
wordEmbedding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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ismissing
Find HTML trees without values

Syntax

tf = ismissing(tree)

Description

tf = ismissing(tree) returns a logical array that indicates which elements of tree do not
reference HTML trees. For example, if tree is given by the Parent property of a root node, then the
function returns 1 (true).

Examples

Test If HTML Tree Is Root Node
To test if an HTML tree object represents a root node, test that the Parent property is missing.

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

Test if the parent of tree references an HTML tree.
tf = ismissing(tree.Parent)

tf = logical
1

Since tree represents the root node of the HTML tree, the value of tree.Parent ismissing and
the ismissing function returns 1 (true).

Input Arguments

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.
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See Also

extractFileText | extractHTMLText | findElement | getAttribute | htmlTree |
readPDFFormData | tokenizedDocument

Topics

“Parse HTML and Extract Text Content”
“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2018b
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isVocabularyWord

Test if word is member of word embedding or encoding

Syntax

tf = isVocabularyWord(emb,words)

tf = isVocabularyWord(enc,words)
tf = isVocabularyWord( _ , 'IgnoreCase’',true)
Description

tf = isVocabularyWord(emb,words) tests if the elements of words are members of the word
embedding emb. The function returns a logical array containing 1 (true) where the words are
members of the word embedding. Elsewhere, the array contains 0 (false). The function, by default,
is case sensitive.

tf = isVocabularyWord(enc,words) tests if the elements of words are members of the word
encoding enc. The function, by default, is case sensitive.

tf = isVocabularyWord(  ,'IgnoreCase’,true) tests if the specified words are in the
vocabulary ignoring case using any of the previous syntaxes.

Examples

Test If Word Is Member of Embedding
Test to determine if words are members of a word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x999994 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = isVocabularyWord(emb,words)

tf = 1x3 logical array

1 1 0
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Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

See Also

doc2sequence | fastTextWordEmbedding | tokenizedDocument | vec2word | word2vec |
wordEmbedding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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Combine multiple bag-of-words or bag-of-n-grams models
Syntax

newBag = join(bag)

newBag = join(bag,dim)

Description

newBag = join(bag) combines the elements in the array bag by merging the frequency counts.
The function combines the elements along the first dimension not equal to 1.

newBag = join(bag,dim) combines the elements in the array bag along the dimension dim.

Examples

Combine Bag-of-Words Models

Create an array of two bags-of-words models from tokenized documents.

str = [ .

"an example of a short sentence"
"a second short sentence"];
documents = tokenizedDocument(str);
bag(1) bagO0fWords (documents(1));
bag(2) bagO0fWords (documents(2))

bag=1x2 object
1x2 bagOfWords array with properties:

Counts
Vocabulary
NumWords
NumDocuments

Combine the bag-of-words models using join.

bag join(bag)

bag =
bagOfWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2
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Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data and create
a bag-of-words model in parallel using parfor. If you have Parallel Computing Toolbox™ installed,
then the parfor loop runs in parallel, otherwise, it runs in serial. Use join to combine an array of
bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have file names
"exampleSonnetN. txt", where N is the number of the sonnet. Get a list of the files and their
locations using dir.

fileLocation = fullfile(matlabroot, 'examples', 'textanalytics', 'exampleSonnet*.txt');
fileInfo = dir(fileLocation)

fileInfo =
0x1 empty struct array with fields:

name
folder
date
bytes
isdir
datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of bag-of-
words models.

bag = bag0fWords;

numFiles numel(fileInfo);
parfor i l:numFiles
f = fileInfo(i);
filename = fullfile(f.folder, f.name);

textData extractFileText (filename);
document tokenizedDocument (textData);
bag(i) = bagO0fWords(document);

end
Combine the bag-of-words models using join.

bag = join(bag)

bag =
bag0fWords with properties:
Counts: []
Vocabulary: [1x0 string]
NumWords: 0
NumDocuments: 0

Input Arguments

bag — Array of bag-of-words or bag-of-n-grams models
bagO0fWords array | bag0OfNgrams array

1-187



1 Functions

1-188

Array of bag-of-words or bag-of-n-grams models, specified as a bag0fWords array or a bagOfNgrams
array. If bag is a bag0OfNgrams array, then each element to be joined must have the same value for
the NgramLengths property.

dim — Dimension along which to join models
positive integer

Dimension along which to join models, specified as a positive integer. If dim is not specified, then the
default is the first dimension with a size that does not equal 1.

Output Arguments

newBag — Output model
bag0fWords array | bagOfNgrams array

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of newBag is
the same as the type of bag. newBag has the same data type as the input model and has a size of 1
along the dimension being joined.

See Also

addDocument | bagOfNgrams | bag0fWords | encode | removeDocument |
removeEmptyDocuments | tfidf | tokenizedDocument | topkngrams | topkwords

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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joinWords

Convert documents to string by joining words

Syntax

newStr
newStr

joinWords (documents)
joinWords (documents,delim)

Description

newStr = joinWords(documents) converts a tokenizedDocument array to a string array by
joining the words in each document with a space.

newStr = joinWords(documents,delim) joins the words with delimiter delim instead of a
space.

Examples

Convert Documents to String by Joining Words

Convert a tokenizedDocument array to a string array by joining the words with a space.
documents = tokenizedDocument([

"an example of a short sentence"

"a second short sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

str

joinWords (documents)
str = 2x1 string

"an example of a short sentence"
"a second short sentence"

Convert a tokenizedDocument array to a string array by joining the words with an underscore.

str

joinWords(documents," ")
str = 2x1 string

"an_example of a short sentence"
"a second short sentence"
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

delim — Delimiter to join words
string scalar | character vector | scalar cell array

Delimiter to join words, specified as a string scalar, character vector, or scalar cell array containing a
character vector.

Example:
Example: ' '
Example: {' '}

Data Types: char | string | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
context | doc2cell | doclength | string | tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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knnsearch

Find nearest neighbors by edit distance

Syntax
idx = knnsearch(eds,words)

[idx,d] = knnsearch(eds,words)
[idx,d] = knnsearch(eds,words,Name,Value)

Description

idx = knnsearch(eds,words) finds the indices of the nearest neighbors in the edit distance

searcher eds to each element in words.

[idx,d] = knnsearch(eds,words) also returns the edit distances between the elements of

words and the nearest neighbors.

[idx,d] = knnsearch(eds,words,Name,Value) specifies additional options using one or more

name-value pair arguments.

Examples

Find Nearest Words

Create an edit distance searcher.

vocabulary = ["MathWorks" "MATLAB" "Simulink"];
eds = editDistanceSearcher(vocabulary,?2);

Find the nearest words to "MALTAB" and "MatWorks".

words = ["MALTAB" "MatWorks"];
idx = knnsearch(eds,words)
idx = 2x1

2

1

Get the words from the vocabulary using the returned indices.

nearestWords = eds.Vocabulary(idx)

nearestWords = Ix2 string
"MATLAB" "MathWorks"
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Find Edit Distances to Nearest Words

Create an edit distance searcher.

vocabulary = ["MATLAB" "Simulink" "MathWorks"];
eds = editDistanceSearcher(vocabulary,?2);

Find the nearest words and their edit distances to "MatWorks" and "MALTAB".

words = ["MatWorks" "MALTAB"];
[idx,d] = knnsearch(eds,words)
idx = 2x1

3

1
d = 2x1

1

2

Get the words from the vocabulary using the returned indices.
nearestWords = eds.Vocabulary(idx)

nearestWords = Ix2 string
"MathWorks" "MATLAB"

Changing the word "MatWorks" to "MathWorks" requires one edit: an insertion. Changing the word
"MALTAB" into "MATLAB" requires two edits: a deletion and an insertion.

Find Multiple Neighbors

Create an edit distance searcher.

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,5);

Find the two nearest words and their edit distances to "Math" and "Analysis".

words = ["Math" "Analysis"];
idx = knnsearch(eds,words, 'K',2)

idx = 2x2

1 2
3 NaN

View the two closest words to "Math".

idxMath = idx(1,:);
newWords = eds.Vocabulary(idxMath)
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newWords = 1x2 string
"MathWorks" "MATLAB"

There is only one word within the maximum edit distance from "Analysis", so the function returns
NaN for the other indices. View the nearest words with valid indices.

idxAnalysis = idx(2,:);
idxAnalysis(isnan(idxAnalysis)) = [1];
newWords = eds.Vocabulary(idxAnalysis)

newWords =
"Analytics”

Input Arguments

eds — Edit distance searcher
editDistanceSearcher

Edit distance searcher, specified as an editDistanceSearcher object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: knnsearch(eds,words, 'K', 3) finds the nearest three neighbors in eds to the elements
of words.

K — Number of nearest neighbors to find
1 (default) | positive integer

Number of nearest neighbors to find for each element in words, specified as a positive integer.
Example: 'K',3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

IncludeTies — Option to include neighbors whose distance values are equal
false (default) | true

Option to return neighbors whose distance values are equal, specified as true or false.
If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit

distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.
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If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.

Example: 'IncludeTies', true

Data Types: logical

Output Arguments

idx — Indices of nearest neighbors in searcher
matrix | cell array of vectors

Indices of nearest neighbors in the searcher, returned as a matrix or a cell array of vectors.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.

If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.

Data Types: double | cell

d — Edit distances to neighbors
matrix | cell array of vectors

Edit distances to neighbors, returned as a matrix or a cell array of vectors.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.

If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.

Data Types: double | cell

See Also
correctSpelling | editDistance | editDistanceSearcher | rangesearch |
splitGraphemes | tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”
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IdaModel

Latent Dirichlet allocation (LDA) model

Description

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. If the model was fit using a bag-of-n-
grams model, then the software treats the n-grams as individual words.

Creation

Create an LDA model using the fitlda function.

Properties

NumTopics — Number of topics
positive integer

Number of topics in the LDA model, specified as a positive integer.

TopicConcentration — Topic concentration
positive scalar

Topic concentration, specified as a positive scalar. The function sets the concentration per topic to
TopicConcentration/NumTopics. For more information, see “Latent Dirichlet Allocation” on page
1-206.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as a nonnegative scalar. The software sets the concentration per word
to WordConcentration/numWords, where numWords is the vocabulary size of the input documents.
For more information, see “Latent Dirichlet Allocation” on page 1-206.

CorpusTopicProbabilities — Topic probabilities of input document set
vector

Topic probabilities of input document set, specified as a vector. The corpus topic probabilities of an
LDA model are the probabilities of observing each topic in the entire data set used to fit the LDA
model. CorpusTopicProbabilities is a 1-by-K vector where K is the number of topics. The kth
entry of CorpusTopicProbabilities corresponds to the probability of observing topic k.

DocumentTopicProbabilities — Topic probabilities per input document
matrix

Topic probabilities per input document, specified as a matrix. The document topic probabilities of an
LDA model are the probabilities of observing each topic in each document used to fit the LDA model.
DocumentTopicProbabilities is a D-by-K matrix where D is the number of documents used to fit
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the LDA model, and K is the number of topics. The (d,k)th entry of DocumentTopicProbabilities
corresponds to the probability of observing topic k in document d.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros), then the
corresponding columns of DocumentTopicProbabilities and TopicWordProbabilities are
ZET0S.

The order of the rows in DocumentTopicProbabilities corresponds to the order of the
documents in the training data.

TopicWordProbabilities — Word probabilities per topic
matrix

Word probabilities per topic, specified as a matrix. The topic word probabilities of an LDA model are
the probabilities of observing each word in each topic of the LDA model. TopicWordProbabilities
is a V-by-K matrix, where V is the number of words in Vocabulary and K is the number of topics.
The (v,k)th entry of TopicWordProbabilities corresponds to the probability of observing word v
in topic k.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros), then the
corresponding columns of DocumentTopicProbabilities and TopicWordProbabilities are
ZEeros.

The order of the rows in TopicWordProbabilities corresponds to the order of the words in
Vocabulary.

TopicOrder — Topic order
"initial-fit-probability' (default) | 'unordered’

Topic order, specified as one of the following:

 ‘'initial-fit-probability' - Sort the topics by the corpus topic probabilities of the initial
model fit. These probabilities are the CorpusTopicProbabilities property of the initial
ldaModel object returned by fitlda. The resume function does not reorder the topics of the
resulting 1daModel objects.

* ‘'unordered' - Do not order topics.

FitInfo — Information recorded when fitting LDA model
struct

Information recorded when fitting LDA model, specified as a struct with the following fields:
* TerminationCode - Status of optimization upon exit

* 0 - Iteration limit reached.
* 1 - Tolerance on log-likelihood satisfied.
* TerminationStatus - Explanation of the returned termination code
* NumIterations - Number of iterations performed
* NegativeloglLikelihood - Negative log-likelihood for the data passed to fitlda
* Perplexity - Perplexity for the data passed to fitlda
* Solver - Name of the solver used
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* History - Struct holding the optimization history
* StochasticInfo - Struct holding information for stochastic solvers

Data Types: struct

Vocabulary — List of words in the model
string vector

List of words in the model, specified as a string vector.

Data Types: string

Object Functions

logp Document log-probabilities and goodness of fit of LDA model
predict Predict top LDA topics of documents
resume Resume fitting LDA model

topkwords Most important words in bag-of-words model or LDA topic

transform  Transform documents into lower-dimensional space

wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA
model

Examples
Fit LDA Model

To reproduce the results in this example, set rng to 'default’.
rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)
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Initial topic assignments

sampled in 0.

16731 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.01 | | 1.215e+03 | 1.000 | 0 |
| 1 | 0.02 | 1.0482e-02 | 1.128e+03 | 1.000 | 0 |
| 2 | 0.02 | 1.7190e-03 | 1.115e+03 | 1.000 | 0 |
| 3 0.02 | 4.3796e-04 | 1.118e+03 | 1.000 | 0 |
| 4 | 0.02 | 9.4193e-04 | 1.111e+03 | 1.000 | 0 |
| 5| 0.03 | 3.7079e-04 | 1.108e+03 | 1.000 | 0 |
| 6 | 0.02 | 9.5777e-05 | 1.107e+03 | 1.000 | 0 |
mdl =

ldaModel with properties:

NumTopics: 4
1

WordConcentration:
TopicConcentration: 1
CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:
TopicOrder:
FitInfo:

Visualize the topics using word clouds.

figure
for topicIdx

1:4

subplot(2,2,topicIdx)

wordcloud(mdl, topicIdx);

title("Topic: " + topicIdx)

end

[0.2500 0.2500 0.2500 0.2500]
[154x4 double]
[3092x4 double]
[1x3092 string]
"initial-fit-probability'
[1x1 struct]
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Highest Probability Words of LDA Topic
Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default’.
rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents);
Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);
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Find the top 20 words of the first topic.
k = 20;

topicldx = 1;

tbl = topkwords(mdl,k,topicIdx)

tb1=20x2 table

Word Score
"eyes" 0.11155
"beauty" 0.05777
"hath" 0.055778
"still" 0.049801
"true" 0.043825
"mine" 0.033865
"find" 0.031873
"black" 0.025897
"look" 0.023905
"tis" 0.023905
"kind" 0.021913
"seen" 0.021913
"found" 0.017929
"sin" 0.015937
"three" 0.013945

"golden" 0.0099608

Find the top 20 words of the first topic and use inverse mean scaling on the scores.
tbl = topkwords(mdl,k,topicIdx, 'Scaling', 'inversemean')

tb1=20x2 table

Word Score
"eyes" 1.2718
"beauty" 0.59022
"hath" 0.5692
"still" 0.50269
"true" 0.43719
"mine" 0.32764
"find" 0.32544
"black" 0.25931
"tis" 0.23755
"look" 0.22519
"kind" 0.21594
"seen" 0.21594
"found" 0.17326
"sin" 0.15223
"three" 0.13143

"golden" 0.090698

Create a word cloud using the scaled scores as the size data.
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figure
wordcloud(tbl.Word, tbl.Score);

find
beauty

mine seen
tis black

fcrund kind

true M't I hath

sin 100K

Document Topic Probabilities of LDA Model

Get the document topic probabilities (also known as topic mixtures) of the documents used to fit an
LDA model.

To reproduce the results, set rng to 'default’.
rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";

str = extractFileText(filename);

textData = split(str,newline);

documents = tokenizedDocument (textData);
Create a bag-of-words model using bagOfWords.
bag = bag0fWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.
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numTopics = 20;

mdl = fitlda(bag,numTopics, 'Verbose',0)

mdl =
ldaModel with properties:

NumTopics:
WordConcentration:
TopicConcentration:
CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:

TopicOrder:

FitInfo:

View the topic probabilities of the first document in the training data.

20

1

5

[1x20 doublel]

[154x20 double]

[3092x20 double]

[1x3092 string]
"initial-fit-probability'
[1x1 struct]

topicMixtures = mdl.DocumentTopicProbabilities;

figure
bar(topicMixtures(1,:))

title("Document 1 Topic Probabilities")

xlabel("Topic Index")
ylabel("Probability")

Document 1 Topic Probabilities

016 T T T

0.14

012

=
-

0.08

Probability

0.06

0.04

0.02

8 10 12 14 16
Topic Index
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Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.

bag = bagO0fWords
bag =
bagOfWords wit
Counts:
Vocabulary:
NumWords:
NumDocuments:

(documents)

h properties:

3092
154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag

Initial topic assignments sampled in 0.

,humTopics)

[154x3092 doublel
[1x3092 string]

0932688 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.38 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.09 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
[ 2 | 0.12 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.18 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
[ 4 | 0.15 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5] 0.09 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.19 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]

Vocabulary:

[1x3092 string]
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TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([

"what's in a name? a rose by any other name would smell as sweet.

"if music be the food of love, play on."]);
topicldx = predict(mdl,newDocuments)

topicIdx = 2x1

19
8

Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)

wordcloud(mdl, topicIdx(1));
title("Topic " + topicIdx(1l))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))

Tomc1§ Topic 8
assurd o, - o
hasvanly "::..,_.I.T. Wt : e '
=== {reasure o o SO s
" mathers ag -‘"J ::M scweels ri ght i
DUI'DDSE nismbar pﬂvg{?f grace "J'..;z.-.'
poets neve r'"( il ik e s ".I".I'rlt" L
”k_“l-a 2 OO
Wi fears fa r raﬂk : m”"l \p?th Inm-g |-r|-|:f5i-? )
weary f dwell h'—"-- Sla:.:-.:m' »
t hccr.« il
kEEp ﬂ-—c..e 1::; al down .r.nam*a made .
=worlda:.. = |OVe I
keapt robs  MEET t ‘v:r_"w

Tthought™:  =thotigh™ "

e

hue ™

Fwear  pace

scou [1AME & eage nch know ...
brnw te” thyself == nature wheran
i grd.\m nE‘Ed . SEEITHNG WO rds S
ha me -.:-:r._:. SCII'IQ forsworn fickla

tongues touches R

cutworn 3085 Moan perpatual bty

wach endar E Eacling

1-205



1 Functions

1-206

More About

Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers underlying topics
in a collection of documents and infers word probabilities in topics. LDA models a collection of D
documents as topic mixtures 64, ..., Op, over K topics characterized by vectors of word probabilities

@1, ..., . The model assumes that the topic mixtures 0, ..., 8p, and the topics ¢, ..., px follow a
Dirichlet distribution with concentration parameters a and j respectively.

The topic mixtures 04, ..., 8p are probability vectors of length K, where K is the number of topics. The
entry 6y; is the probability of topic i appearing in the dth document. The topic mixtures correspond to
the rows of the DocumentTopicProbabilities property of the LdaModel object.

The topics ¢, ..., g are probability vectors of length V, where V is the number of words in the
vocabulary. The entry ¢;, corresponds to the probability of the vth word of the vocabulary appearing
in the ith topic. The topics ¢y, ..., @x correspond to the columns of the TopicWordProbabilities
property of the LdaModel object.

Given the topics ¢y, ..., @x and Dirichlet prior a on the topic mixtures, LDA assumes the following
generative process for a document:

1 Sample a topic mixture 6~Dirichlet(a). The random variable 0 is a probability vector of length K,
where K is the number of topics.

2 For each word in the document:

a Sample a topic index z—Categorical(f). The random variable z is an integer from 1 through
K, where K is the number of topics.
b Sample a word w~Categorical(¢,). The random variable w is an integer from 1 through V,

where V is the number of words in the vocabulary, and represents the corresponding word in
the vocabulary.

Under this generative process, the joint distribution of a document with words wy, ..., wy, with topic
mixture 6, and with topic indices z1, ..., 2y is given by

N
a) H p(zn

n=1

p6,z,wia, p) = p(O 0)p(wn|zn, 0),

where N is the number of words in the document. Summing the joint distribution over z and then
integrating over 0 yields the marginal distribution of a document w:

a,¢) = éfp(e

The following diagram illustrates the LDA model as a probabilistic graphical model. Shaded nodes are
observed variables, unshaded nodes are latent variables, nodes without outlines are the model
parameters. The arrows highlight dependencies between random variables and the plates indicate
repeated nodes.

p(w

N
@) [ Sp@a|0)pwy |z 0)d6.
n=1z
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Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution. Given the
number of categories K = 2, and concentration parameter a, where a is a vector of positive reals of
length K, the probability density function of the Dirichlet distribution is given by

K

i=1
where B denotes the multivariate Beta function given by

K
. re

B(a) =

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The symmetric
Dirichlet distribution is characterized by the concentration parameter a, where all the elements of a
are the same.

See Also

bagOfWords | fitlda | logp | LsaModel | predict | resume | topkwords | transform |
wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
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lexrankScores

Document scoring with LexRank algorithm

Syntax

lexrankScores(documents)
lexrankScores(bag)

scores
scores

Description

scores = lexrankScores(documents) scores the specified documents for importance according
to pairwise similarity values using the LexRank algorithm. The function uses cosine similarity, and

computes importance using the PageRank algorithm.

scores = lexrankScores(bag) scores documents encoded by a bag-of-words or bag-of-n-grams

model.

Examples

Importance of Documents

Create an array of tokenized documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast brown fox jumped over the lazy dog"
"the lazy dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast brown fox jumped over the lazy dog
tokens: the lazy dog sat there and did nothing
tokens: the other animals sat there watching

[e) e cJVe (o]

Calculate their LexRank scores.
scores = lexrankScores(documents);
Visualize the scores in a bar chart.

figure

bar(scores)
xlabel("Document")
ylabel("Score")
title("LexRank Scores")
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LexRank Scores

0.35 T

0.3

0.25

0.2

Score

0.1
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Document

Scores Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument(textData);

bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 doublel]
Vocabulary: [1x3527 string]
NumWords: 3527
NumDocuments: 154

Calculate LexRank scores for each sonnet.

scores = lexrankScores(bag);

Visualize the scores in a bar chart.
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figure

bar(scores)
xlabel("Document")
ylabel("Score")
title("LexRank Scores")

LexRank Scores

0.01 T

Score

Document

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.
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Output Arguments

scores — LexRank scores
vector

LexRank scores, returned as a N-by-1 vector, where scores (i) corresponds to the score for the ith
input document and N is the number of input documents.

References

[1] Erkan, Glunes, and Dragomir R. Radev. "Lexrank: Graph-based Lexical Centrality as Salience in
Text Summarization." Journal of Artificial Intelligence Research 22 (2004): 457-479.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
mmrScores | rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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Latent semantic analysis (LSA) model

Description

A latent semantic analysis (LSA) model discovers relationships between documents and the words
that they contain. An LSA model is a dimensionality reduction tool useful for running low-dimensional
statistical models on high-dimensional word counts. If the model was fit using a bag-of-n-grams
model, then the software treats the n-grams as individual words.

Creation

Create an LSA model using the fitlsa function.

Properties

NumComponents — Number of components
nonnegative integer

Number of components, specified as a nonnegative integer. The number of components is the
dimensionality of the result vectors. Changing the value of NumComponents changes the length of
the resulting vectors, without influencing the initial values. You can only set NumComponents to be
less than or equal to the number of components used to fit the LSA model.

Example: 100

FeatureStrengthExponent — Exponent scaling feature component strengths
nonnegative scalar

Exponent scaling feature component strengths for the DocumentScores and WordScores
properties, and the transform function, specified as a nonnegative scalar. The LSA model scales the
properties by their singular values (feature strengths), with an exponent of
FeatureStrengthExponent/2.

Example: 2.5

ComponentWeights — Component weights
numeric vector

Component weights, specified as a numeric vector. The component weights of an LSA model are the
singular values, squared. ComponentWeights is a 1-by-NumComponents vector where the jth entry
corresponds to the weight of component j. The components are ordered by decreasing weights. You
can use the weights to estimate the importance of components.

DocumentScores — Score vectors per input document
matrix

Score vectors per input document, specified as a matrix. The document scores of an LSA model are
the score vectors in lower dimensional space of each document used to fit the LSA model.
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DocumentScores is a D-by-NumComponents matrix where D is the number of documents used to fit
the LSA model. The (i j)th entry of DocumentScores corresponds to the score of component j in
document i.

WordScores — Word scores per component
matrix

Word scores per component, specified as a matrix. The word scores of an LSA model are the scores of
each word in each component of the LSA model. WordScores is a V-by-NumComponents matrix
where V is the number of words in Vocabulary. The (v;j)th entry of WordScores corresponds to the
score of word v in component j.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions
transform Transform documents into lower-dimensional space

Examples

Fit LSA Model
Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)
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mdl =
lsaModel with properties:

NumComponents: 20
ComponentWeights: [1x20 double]
DocumentScores: [154x20 double]
WordScores: [3092x20 double]
Vocabulary: [1x3092 string]
FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument ([

"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);
dscores = transform(mdl, newDocuments)

dscores = 2x20

0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604
0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082

Calculate Document Similarity

Create a bag-of-words model from some text data.

str = [
"I enjoy ham, eggs and bacon for breakfast."
"I sometimes skip breakfast."
"I eat eggs and ham for dinner."

documents = tokenizedDocument(str);
bag = bag0fWords(documents);

Fit an LSA model with two components. Set the feature strength exponent to 0.5.

numComponents = 2;

exponent = 0.5;

mdl = fitlsa(bag,numComponents,
'FeatureStrengthExponent',exponent)

mdl =
lsaModel with properties:

NumComponents: 2
ComponentWeights: [16.2268 4.0000]
DocumentScores: [3x2 double]
WordScores: [14x2 double]
Vocabulary: [1x14 string]
FeatureStrengthExponent: 0.5000

-0.0205 -0.1127
0.0522 0.0690

Calculate the cosine distance between the documents score vectors using pdist. View the distances
in a matrix D using squareform. D(1i, j) denotes the distance between document i and j.
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dscores = mdl.DocumentScores;
distances = pdist(dscores, 'cosine');
D = squareform(distances)

D = 3x3
0 0.6244 0.1489
0.6244 0 1.1670
0.1489 1.1670 0

Visualize the similarity between documents by plotting the document score vectors in a compass plot.

figure

compass(dscores(1,1),dscores(1,2), 'red")

hold on

compass(dscores(2,1),dscores(2,2), 'green')
compass(dscores(3,1),dscores(3,2), 'blue")

hold off

title("Document Scores")

legend(["Document 1" "Document 2" "Document 3"], 'Location', 'bestoutside')

Document Scores

90 15 Document 1
120 G0 Document 2
Document 3
: 1
150 30
' 0.5
180 = : 0
210 330
240 300
270

See Also
bagO0fWords | fitlsa | ldaModel | LsaModel | transform

Topics
“Analyze Text Data Using Topic Models”
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“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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logp

Document log-probabilities and goodness of fit of LDA model

Syntax

logProb = logp(ldaMdl,documents)
logProb = logp(ldaMdl, counts)
logProb = logp(ldaMdl,bag)
[LogProb,ppl]l = logp( )

= logp(___ ,Name,Value)

Description

logProb = logp(ldaMdl,documents) returns the log-probabilities of documents under the LDA
model 1daMd1.

logProb = logp(ldaMdl, counts) returns the log-probabilities of the documents represented by
the matrix of word counts counts.

logProb = logp(ldaMdl, bag) returns the log-probabilities of the documents represented by a
bag-of-words or bag-of-n-grams model.

[LogProb,ppl] = logp( ) returns the perplexity computed from the log-probabilities.

= logp( ,Name, Value) specifies additional options using one or more name-value pair
arguments.

Examples

Calculate Document Log-Probabilities

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bagO0fWords(documents)

bag =
bag0fWords with properties:



logp

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Compute the document log-probabilities of the training documents and show them in a histogram.

logProbabilities = logp(mdl,documents);
figure

histogram(logProbabilities)

xlabel("Log Probability")
ylabel("Frequency")

title("Document Log-Probabilities")

Document Log-Probabilities
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Frequency
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Log Probability

Identify the three documents with the lowest log-probability. A low log-probability may suggest that
the document may be an outlier.

[~,1dx] = sort(logProbabilities);
idx(1:3)

ans = 3xI
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documents(idx(1:3))

ans =
3x1 tokenizedDocument:

76 tokens: poor soul centre sinful earth sinful earth rebel powers array why dost thou pine !
76 tokens: devouring time blunt thou lions paws make earth devour own sweet brood pluck keen
73 tokens: brass nor stone nor earth nor boundless sea sad mortality oersways power rage sha

Calculate Document Log-Probabilities from Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0799309 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.23 | | 1.159e+03 | 5.000 | 0 |
| 1| 0.08 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.08 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.14 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.09 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.09 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.10 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [

1x20 double]
154x20 double]
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TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Compute the document log-probabilities of the training documents. Specify to draw 500 samples for
each document.

numSamples = 500;
logProbabilities = logp(mdl, counts,
"NumSamples',numSamples);

Show the document log-probabilities in a histogram.

figure

histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")

title("Document Log-Probabilities")

Document Log-Probabilities

35

Frequency
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=
=

-550 -500 -450 400 -350
Log Probability
Identify the indices of the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3x1
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Compare Goodness of Fit

Compare the goodness of fit for two LDA models by calculating the perplexity of a held-out test set of
documents.

To reproduce the results, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Set aside 10% of the documents at random for testing.

numDocuments = numel(documents);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsTest = documents(cvp.test);

Create a bag-of-words model from the training documents.

bag bagO0fWords (documentsTrain)

bag =
bagOfWords with properties:

Counts: [139x2909 double]
Vocabulary: [1x2909 string]
NumWords: 2909
NumDocuments: 139

Fit an LDA model with 20 topics to the bag-of-words model. To suppress verbose output, set
'Verbose' to 0.

numTopics = 20;
mdll = fitlda(bag,numTopics, 'Verbose',0);

View information about the model fit.
mdll.FitInfo

ans = struct with fields:
TerminationCode: 1
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TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 26
NegativelLoglLikelihood: 5.6915e+04
Perplexity: 742.7118
Solver: "cgs"
History: [1x1 struct]

Compute the perplexity of the held-out test set.
[~,ppll] = logp(mdll,documentsTest)

ppll = 781.6078

Fit an LDA model with 40 topics to the bag-of-words model.

numTopics = 40;
mdl2 = fitlda(bag,numTopics, 'Verbose',0);

View information about the model fit.
mdl2.FitInfo
ans = struct with fields:

TerminationCode: 1

TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 37
NegativelLoglLikelihood: 5.4466e+04
Perplexity: 558.8685

Solver: "cgs"
History: [1x1 struct]

Compute the perplexity of the held-out test set.
[~,ppl2] = logp(mdl2,documentsTest)

ppl2 = 808.6602

A lower perplexity suggests that the model may be better fit to the held-out test data.

Input Arguments

1daMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.
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bag — Input model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts (i, j) corresponds to the number of times the

Jjth word of the vocabulary appears in the ith document. Otherwise, the value counts (i, j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'NumSamples',b 500 specifies to draw 500 samples for each document

DocumentsIn — Orientation of documents
"rows' (default) | ' columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn’' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw for each document, specified as the comma-separated pair consisting of
"NumSamples' and a positive integer.

Example: 'NumSamples', 500

Output Arguments

logProb — Log-probabilities
numeric vector

Log-probabilities of the documents under the LDA model, returned as a numeric vector.
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ppl — Perplexity
positive scalar

Perplexity of the documents calculated from the log-probabilities, returned as a positive scalar.

Algorithms

The logp uses the iterated pseudo-count method described in

References

[1] Wallach, Hanna M., Iain Murray, Ruslan Salakhutdinov, and David Mimno. "Evaluation methods for
topic models." In Proceedings of the 26th annual international conference on machine
learning, pp. 1105-1112. ACM, 2009. Harvard

See Also
bagOfWords | fitlda | ldaModel | predict | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”

“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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Convert documents to lowercase

Syntax

newDocuments = lower(documents)

Description

newDocuments = lower(documents) converts each uppercase character in the input documents
to the corresponding lowercase character, and leaves all other characters unchanged.

Examples

Convert Documents to Lowercase

Convert all uppercase characters in an array of documents to lowercase.
documents = tokenizedDocument ([

"An Example of a Short Sentence"

"A Second Short Sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: An Example of a Short Sentence
4 tokens: A Second Short Sentence

newDocuments = lower(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array
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Output documents, returned as a tokenizedDocument array.

See Also

decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | tokenizedDocument |
upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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Options for MeCab tokenization

Description

A mecabOptions object specifies additional options for tokenizing Japanese and Korean text.

To tokenize using the specified MeCab tokenization options, use the 'TokenizeMethod' option of
tokenizedDocument.

Creation

Syntax

options = mecabOptions

options = mecabOptions(Name,Value)

Description

options = mecabOptions creates a MeCab tokenization option set with the default values for
tokenizing Japanese.

options = mecabOptions(Name,Value) additionally sets additional “Properties” on page 1-228
using one or more name-value pair arguments.

Properties

Model — Path to trained model
string scalar | character vector

Path to trained model (MeCab dictionary), specified as a string scalar or a character vector.

The default value is a path to the internal dictionary for Japanese tokenization.
Example: "C:\myDict"
Data Types: char | string

UserModel — File containing model extension
"" (default) | string scalar | character vector

File containing model extension (MeCab user dictionary .dic file), specified as a string scalar or a
character vector.

Example: "C:\myFile.dic"
Data Types: char | string

LemmaExtractor — Function extracting lemma from MeCab reply
@textanalytics.ja.mecabToLemma (default) | function handle
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Function extracting lemma from MeCab reply, specified as a function handle.

The function must have the form lemmata = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.
* PartOfSpeech - Numerical code used inside the dictionary for the part-of-speech classification.

The output lemmata is a string array of the same size as words containing the extracted lemmata.

The default lemma extractor is the textanalytics.ja.mecabToLemma function.

Data Types: function handle

POSExtractor — Function extracting part-of-speech information from MeCab reply
@textanalytics.ja.mecabToPO0S (default) | function handle

Function extracting part-of-speech information from MeCab reply, specified as a function handle.

The function must have the form posTags = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* PartOfSpeech - Numerical code used inside the dictionary for the part-of-speech classification.

The output posTags is a categorical array of the same size as words containing the extracted part-

of-speech tags from the following categories:

* adjective

* adposition

* adverb

* auxiliary-verb

e coord-conjunction

* determiner

* interjection

* noun
* numeral
* pronoun

* proper-noun
* punctuation
* symbol

s verb

* other

The default part-of-speech information extractor is the textanalytics.ja.mecabToPO0S function.

Data Types: function handle
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NERExtractor — Function extracting named entity information from MeCab reply
@textanalytics.ja.mecabToNER (default) | function handle

Function extracting named entity information from MeCab reply, specified as a function handle.

The function must have the form entities = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* PartOfSpeech - Numerical code used inside the dictionary for the part-of-speech classification.

The output entities is a categorical array of the same size as words containing the extracted

entities from the following categories:

* non-entity

* person

* organization

* location

* other

The default part-of-speech information extractor is the textanalytics. ja.mecabToNER function.

Data Types: function handle

Examples

Create MeCab Options Object

Create a mecabOptions object containing the default options for Japanese tokenization.

options = mecabOptions

options =
MecabOptions with properties:

Model: "C:\Program Files\MATLAB\R2019b\sys\share\dict-ipadic"
UserModel: ""
LemmaExtractor: @textanalytics.ja.mecabToLemma
POSExtractor: @textanalytics.ja.mecabToP0S
NERExtractor: @textanalytics.ja.mecabToNER

Specify MeCab User Dictionary for Tokenization
Tokenize Japanese text using custom MeCab options.

Create a string array of Japanese text.

str = [
"ERITINA. BLT, "
"EDWATELD, "
"EIZEMNES, RLOATWS, "
"EQENESEFIELTWD, "];
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Create a mecabOptions object and specify a user model as a .dic file using the 'UserModel’
option.

options = mecabOptions('UserModel', 'myFile.dic")

options =

MecabOptions with properties:
Model: "C:\Program Files\MATLAB\R2019b\sys\share\dict-ipadic"
UserModel: "myFile.dic"
LemmaExtractor: @textanalytics.ja.mecabToLemma

POSExtractor: @textanalytics.ja.mecabToPOS
NERExtractor: @textanalytics.ja.mecabToNER

Tokenize the text using the specified options using the 'TokenizeMethod' option.

documents = tokenizedDocument(str, 'TokenizeMethod',options)

documents =
4x1 tokenizedDocument:
6 tokens: Z [T W& . ELL .
6 tokens: & O & T HLL .

10 tokens: I 2 M BE . B T WS,
10 tokens: D E N EE & BL T WD,

See Also
addEntityDetails | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
corpusLanguage | normalizeWords | tokenDetails | tokenizedDocument

Topics

“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”

Introduced in R2019b
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Document scoring with Maximal Marginal Relevance (MMR) algorithm

Syntax

scores mmrScores (documents,queries)
scores = mmrScores(bag,queries)
scores mmrScores ( , Lambda)

Description

scores = mmrScores(documents,queries) scores documents according to their relevance to a
queries avoiding redundancy using the MMR algorithm. The score in scores (i, j) is the MMR
score of documents (i) relative to queries(j).

scores = mmrScores(bag,queries) scores documents encoded by the bag-of-words or bag-of-n-
grams model bag relative to queries. The score in scores(i,j) is the MMR score of the ith
document in bag relative to queries(j).

scores = mmrScores ( , Lambda) also specifies the trade off between relevance and
redundancy.

Examples

Relevance to Query

Create an array of input documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast fox jumped over the lazy dog
tokens: the dog sat there and did nothing

tokens: the other animals sat there watching

(o) BN e {e)

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"];
queries = tokenizedDocument(str)
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queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate MMR scores using the mmrScores function. The output is a sparse matrix.

scores = mmrScores(documents,queries);

Visualize the MMR scores in a heat map.

figure

heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores")

MMR Scores

0.2

0.2445

015

01

0.05

0.2037

-0.05

Input Document

1-0.15

1-0.25

Query Document

Higher scores correspond to stonger relavence to the query documents.

Relevance Versus Redundancy

Create an array of input documents.
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str = [
"the quick brown fox jumped over the lazy dog"
"the quick brown fox jumped over the lazy dog"
"the fast fox jumped over the lazy dog"
"the dog sat there and did nothing"
"the other animals sat there watching"
"the other animals sat there watching"];
documents = tokenizedDocument(str);

Create a bag-of-words model from the input documents.

bag bagO0fWords (documents)

bag =
bagOfWords with properties:

Counts: [6x17 double]

Vocabulary: [1x17 string]
NumWords: 17
NumDocuments: 6

Create an array of query documents.

str = [
"a brown fox leaped over the lazy dog"
"another fox leaped over the dog"l];
queries = tokenizedDocument(str)

queries =
2x1 tokenizedDocument:

8 tokens: a brown fox leaped over the lazy dog
6 tokens: another fox leaped over the dog

Calculate the MMR scores. The output is a sparse matrix.
scores = mmrScores(bag,queries);
Visualize the MMR scores in a heat map.

figure

heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores")
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MMR Scores

0.2487

Input Document

6 -0.6813

-0.6747

Query Document

-0.5

-0.6

Now calculate the scores again, and set the lambda value to 0.01. When the lambda value is close to
0, redundant documents yield lower scores and diverse (but less query-relevant) documents yield

higher scores.

lambda
scores

0.01;
mmrScores(bag, queries, lambda) ;

Visualize the MMR scores in a heat map.

figure

heatmap(scores);

xlabel("Query Document")

ylabel("Input Document")

title("MMR Scores, lambda = " + lambda)
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MMR Scores, lambda = 0.01

0.00829
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= 0.0064 66

=
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£
1-0.7
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1-0.8
1-0.8

Query Document

Finally, calculate the scores again and set the lambda value to 1. When the lambda value is 1, the
query-relevant documents yield higher scores despite other documents yielding high scores.

lambda
scores

1;
mmrScores(bag, queries, lambda) ;

Visualize the MMR scores in a heat map.

figure

heatmap(scores);

xlabel("Query Document")

ylabel("Input Document")

title("MMR Scores, lambda = " + lambda)
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MMR Scores, lambda =1
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6 0.06232 0.08449 04
1 2

Query Document

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | string array of words | cell array of character vectors

Set of query documents, specified as one of the following:

* A tokenizedDocument array

* A 1-by-N string array representing a single document, where each element is a word
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* A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bag0fWords (documents). If
your syntax specifies bag, then the function encodes queries using bag then uses the resulting tf-idf
matrix.

lambda — Trade off between relevance and redundancy
0.3 (default) | nonnegative scalar

Trade off between relevance and redundancy, specified as a nonnegative scalar.

When lambda is close to 0, redundant documents yield lower scores and diverse (but less query-
relevant) documents yield higher scores. If Llambda is 1, then query-relevant documents yield higher
scores despite other documents yielding high scores.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Output Arguments

scores — MMR scores
vector

MMR scores, returned as an N1-by-N2 matrix, where scores (i, j) is the MMR score of
documents (i) relative to jth query document, and N1 and N2 are the number of input and query
documents, respectively.

A document has a high MMR score if it is both relevant to the query and has minimal similarity
relative to the other documents.

References

[1] Carbonell, Jaime G., and Jade Goldstein. "The use of MMR, diversity-based reranking for
reordering documents and producing summaries." In SIGIR, vol. 98, pp. 335-336. 1998.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
lexrankScores | rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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normalizeWords

Stem or lemmatize words

Syntax

updatedDocuments = normalizeWords(documents)

updatedWords = normalizeWords(words)

updatedWords = normalizeWords(words, 'Language', language)
= normalizeWords(  ,'Style',style)

Description

Use normalizeWords to reduce words to a root form. To lemmatize English words (reduce them to
their dictionary forms), set the 'Style"' option to 'lemma".

The function supports English, Japanese, German, and Korean text.

updatedDocuments = normalizeWords(documents) reduces the words in documents to a root
form. For English and German text, the function, by default, stems the words using the Porter
stemmer for English and German text respectively. For Japanese and Korean text, the function, by
default, lemmatizes the words using the MeCab tokenizer.

updatedWords = normalizeWords(words) reduces each word in the string array words to a root
form.

updatedWords = normalizeWords(words, 'Language', language) reduces the words and also
specifies the word language.

= normalizeWords ( , 'Style',style) also specifies normalization style. For example,
normalizeWords (documents, 'Style', 'lemma') lemmatizes the words in the input documents.

Examples

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
"a strongly worded collection of words"
"another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: a strongli word collect of word
4 tokens: anoth collect of word
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Stem Words in String Array

Stem the words in a string array using the Porter stemmer. Each element of the string array must be
a single word.

words = ["a" "strongly" "worded" "collection of" "words"];

newWords = normalizeWords(words)

newWords = 1x6 string
"a "strongli" "word" "collect" "of" "word"

Lemmatize Words in Documents

Lemmatize the words in a document array.

documents = tokenizedDocument ([
"I am building a house."
"The building has two floors."]);
newDocuments = normalizeWords(documents, 'Style', 'lemma’)

newDocuments =
2x1 tokenizedDocument:

6 tokens: i be build a house .
6 tokens: the build have two floor .

To improve the lemmatization, first add part-of-speech details to the documents using the
addPart0fSpeechDetails function. For example, if the documents contain part-of-speech details,
then normalizeWords reduces the only verb "building" and not the noun "building".

documents = addPartOfSpeechDetails(documents);
newDocuments = normalizeWords(documents, 'Style', 'lemma')

newDocuments =
2x1 tokenizedDocument:

6 tokens: i be build a house .
6 tokens: the building have two floor .

Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function automatically detects
Japanese text.

str = [
"EIZEMNES, BRLOATWS, "
"EQEMNMESFELTWS, "
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"BRETIXELS T, HF%EL, "
"B DERETHTGEL, "]
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.

documents = normalizeWords (documents)

documents =
4x1 tokenizedDocument:

10 tokens: ZE [ 2 M 8 . B T Wb,
10 tokens: & M 2 M EE F I T W5,
9 tokens: BR T [ &Ly T . FHIFdH %L,
7 tokens: =< M ER £T H+5 7@

Stem German Text

Tokenize German text using the tokenizedDocument function. The function automatically detects
German text.

str = [
"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str);

Stem the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
2x1 tokenizedDocument:

8 tokens: gut morg . wie geht es dir ?
6 tokens: heut wird ein gut tag

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell
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style — Normalization style
‘stem' | 'lemma’

Normalization style, specified as one of the following:

* 'stem' - Stem words using the Porter stemmer. This option supports English and German text
only. For English and German text, this value is the default.

* ‘'lemma' - Extract the dictionary form of each word. This option supports English, Japanese, and
Korean text only. If a word is not in the internal dictionary, then the function outputs the word
unchanged. For English text, the output is lowercase. For Japanese and Korean text, this value is
the default.

The function only normalizes tokens with type ' letters' and 'other'. For more information on
token types, see tokenDetails.

Tip For English text, to improve lemmatization of words in documents, first add part-of-speech
details using the addPart0fSpeechDetails function.

language — Word language
1 en 1 | 1 de 1

Word language, specified as one of the following:

* 'en' - English language
* 'de' - German language

If you do not specify language, then the software detects the language automatically. To lemmatize
Japanese or Korean text, use tokenizedDocument input.

Data Types: char | string

Output Arguments

updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array.

updatedWords — Updated words
string array | character vector | cell array of character vectors

Updated words, returned as a string array, character vector, or cell array of character vectors. words
and updatedWords have the same data type.

Algorithms
Language Details
tokenizedDocument objects contain details about the tokens including language details. The

language details of the input documents determine the behavior of normalizeWords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To



normalizeWords

specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

Compatibility Considerations

normalizeWords skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, normalizeWords normalizes tokens with type
'letters' or 'other' only. This behavior prevents the function from affecting complex tokens such
as URLs and email-addresses.

In previous versions, normalizeWords normalizes all tokens. To reproduce this behavior, use the
command updatedDocuments = docfun(@(str) normalizeWords(str),documents).

See Also

addLemmaDetails | addPart0fSpeechDetails | bagOfNgrams | bagOfWords |
removeLongWords | removeShortWords | removeStopWords | removeWords | stopWords |
tokenDetails | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2017b
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plus, +

Append documents

Syntax

newDocuments
newDocuments

documentsl + documents?2
plus(documentsl,documents2)

Description

newDocuments = documentsl + documents2 appends the documents in documents?2 to the
documents in documentsl.

newDocuments

= plus(documentsl,documents2) is equivalent to newDocuments =

documentsl + documents2.

Examples

Append Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "s
str = extract
textData = sp
documents = t

onnetsPreprocessed. txt";
FileText(filename);
lit(str,newline);
okenizedDocument (textData);

Create arrays containing the first 5 and second 5 sonnets.

documentsl =

documentsl =
5x1 tokeniz

70 tokens:
71 tokens:
65 tokens:
71 tokens:
61 tokens:

documents2 =

documents2 =

documents(1:5)

edDocument:

fairest creatures desire increase thereby beautys rose might never die riper time
forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
look thy glass tell face thou viewest time face form another whose fresh repair ti
unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair

documents(6:10)

5x1 tokenizedDocument:

68 tokens
64 tokens
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70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel

Append the second 5 sonnets to the first 5 sonnets.
newDocuments = documentsl + documents2

newDocuments =
5x1 tokenizedDocument:

138 tokens: fairest creatures desire increase thereby beautys rose might never die riper tim
135 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy you
135 tokens: look thy glass tell face thou viewest time face form another whose fresh repair

141 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy nature:
130 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfai

Input Arguments

documentsl — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documentsl and documents2 must be
the same size.

documents2 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documentsl and documents2 must be
the same size.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams | bag0fWords | docfun |
eraseURLs | normalizeWords | replace | tokenDetails | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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predict

Predict top LDA topics of documents

Syntax

topicldx = predict(ldaMdl,documents)
topicIdx = predict(ldaMdl,bag)

topicIdx = predict(ldaMdl, counts)
[topicIdx,score] = predict( )
= predict(_  ,Name,Value)
Description

topicIdx = predict(ldaMdl, documents) returns the LDA topic indices with the largest
probabilities for documents based on the LDA model 1daMd1l.

topicIdx = predict(ldaMdl, bag) returns the LDA topic indices with the largest probabilities
for the documents represented by a bag-of-words or bag-of-n-grams model.

topicIdx = predict(ldaMdl, counts) returns the LDA topic indices with the largest
probabilities for the documents represented by a matrix of word counts.

[topicIdx,score] = predict( ) also returns a matrix of posterior probabilities score.

= predict( ,Name, Value) specifies additional options using one or more name-value
pair arguments.

Examples

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bag0OfWords(documents)

bag =
bag0fWords with properties:
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Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0932688 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.38 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.09 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.12 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.18 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.15 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.09 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.19 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [
TopicWordProbabilities: [

1x20 double]
154x20 double]
3092x20 double]

Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'

FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([

"what's in a name? a rose by any other name would smell as sweet."

"if music be the food of love, play on."]);

topicldx = predict(mdl,newDocuments)
topicIdx = 2x1

19
8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl, topicIdx(1));
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title("Topic " + topicIdx(1l))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))
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Predict Top LDA Topics of Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to 'default’.

rng('default"')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.103468 seconds.
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| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.18 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.10 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.10 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.12 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.16 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5| 0.19 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.10 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:

NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Predict the top topics for the first 5 documents in counts.

topicIdx predict(mdl, counts(1:5,:))

topicIdx = 5x1

3
15
19

3
14

Calculate Topic Prediction Scores

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

1-249



1 Functions

1-250

Create a bag-of-words model using bag0fWords.
bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Predict the top topics for a new document. Specify the iteration limit to be 200.

newDocument = tokenizedDocument("what's in a name? a rose by any other name would smell as sweet

iterationLimit = 200;
[topicIdx,scores] = predict(mdl,newDocument,
'TterationLimit',iterationLimit)

topicIdx = 19
scores = 1x20

0.0250 0.0250 0.0250 0.0250 0.1250

View the prediction scores in a bar chart.

figure

bar(scores)

title("LDA Topic Prediction Scores")
xlabel("Topic Index")
ylabel("Score")

0.0250

0.0250

0.0250

0.0250

0.
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LDA Topic Prediction Scores

0.25 T T

0.2

Score

0.1

0.05

0 2 4 6 8 0 12 14 16 18 20
Topic Index

Input Arguments

1daMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a tokenizedDocument, then it must be a column vector. If
documents is a string array or a cell array of character vectors, then it must be a row of the words of
a single document.

Tip To ensure that the function does not discard useful information, you must first preprocess the
input documents using the same steps used to preprocess the documents used to train the model.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts (i, j) corresponds to the number of times the

jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'IterationLimit', 200 specifies the iteration limit to be 200.

DocumentsIn — Orientation of documents
"rows' (default) | ' columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* ‘'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
‘IterationLimit' and a positive integer.

Example: 'IterationLimit', 200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of

'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

Output Arguments

topicIdx — Predicted topic indices
vector of numeric indices
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Predicted topic indices, returned as a vector of numeric indices.

score — Predicted topic probabilities
matrix

Predicted topic probabilities, returned as a D-by-K matrix, where D is the number of input documents
and K is the number of topics in the LDA model. score(1i, j) is the probability that topic j appears
in document i. Each row of score sums to one.

See Also
bagO0fWords | fitlda | ldaModel | Logp | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”

“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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rakeKeywords

Extract keywords using RAKE

Syntax

tbl = rakeKeywords(documents)
tbl rakeKeywords (documents,Name, Value)

Description

tbl = rakeKeywords(documents) extracts keywords and respective scores using the Rapid
Automatic Keyword Extraction (RAKE) algorithm. The function supports English, Japanese, German,
and Korean text. To learn how to use rakeKeywords for other languages, see “Language
Considerations” on page 1-258.

tbl = rakeKeywords(documents,Name,Value) specifies additional options using one or more
name-value pair arguments.

Tip The rakeKeywords function, by default, extracts keywords using stop words and punctuation
characters. When using the default values for the 'Delimiters' and 'MergingDelimiters'
options, do not remove stop words or punctuation characters from the input text.

Examples

Extract Keywords Using RAKE

Create an array of tokenized documents containing the text data.

textData = [
"MATLAB provides tools for scientists and engineers. MATLAB is used by scientists and engine
"Analyze text and images. You can import text and images."
"Analyze text and images. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument(textData);

Extract the keywords using the rakeKeywords function.
tbl = rakeKeywords(documents)

tbl=12x3 table

Keyword DocumentNumber Score
"MATLAB" "provides" "tools" 1 8
"MATLAB" " " 1 2
"scientists" "and" "engineers" 1 2
"engineers" " " 1 1
"scientists" " " 1 1
"Analyze" "text" " 2 4
"import" "text" " 2 4
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"images" e e 2 1
"Analyze" "text" e 3 4
"MATLAB" o " 3 1
"images" " " 3 1
"videos" " " 3 1

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining

entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single sting using the join and strip
functions.

if size(tbl.Keyword,2) > 1

tbl.Keyword = strip(join(tbl.Keyword));
end
thl

thl=12x3 table
Keyword DocumentNumber Score

"MATLAB provides tools" 1 8
"MATLAB" 1 2
"scientists and engineers" 1 2
"engineers" 1 1
"scientists" 1 1
"Analyze text" 2 4
"import text" 2 4
"images" 2 1
"Analyze text" 3 4
"MATLAB" 3 1
"images" 3 1
"videos" 3 1

Specify Maximum Number of Keywords Per Document

Create an array of tokenized document containing the text data.

textData = [
"MATLAB provides tools for scientists and engineers. MATLAB is used by scientists and engine
"Analyze text and images. You can import text and images."
"Analyze text and images. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument(textData);

Extract the top two keywords using the rakeKeywords function and setting the 'MaxNumKeywords'
option to 2.

tbl = rakeKeywords(documents, 'MaxNumKeywords',2)

tbl=6x3 table
Keyword DocumentNumber Score
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"MATLAB" "provides" "tools" 1 8
"MATLAB" e e 1 2
"Analyze" "text" e 2 4
"import" "text" e 2 4
"Analyze" "text" e 3 4
"MATLAB" e e 3 1

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining
entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single sting using the join and strip
functions.

if size(tbl.Keyword,2) > 1

tbl.Keyword = strip(join(tbl.Keyword));
end
tbl

tbl=6x3 table
Keyword DocumentNumber Score

"MATLAB provides tools"
"MATLAB"

"Analyze text"

"import text"

"Analyze text"

"MATLAB"

WWNN =
A BBRNO©

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: rakeKeywords (documents, ‘MaxNumKeywords',b20) returns at most 20 keywords per
document.

MaxNumKeywords — Maximum number of keywords to return per document
Inf (default) | positive integer
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Maximum number of keywords to return per document, specified as the comma-separated pair
consisting of 'MaxNumKeywords' and a positive integer or Inf.

If MaxNumKeywords is Inf, then the function returns all identified keywords.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

Delimiters — Tokens for splitting documents into keywords
string array | character vector | cell array of character vectors

Tokens for splitting documents into keywords, specified as the comma-separated pair consisting of
'Delimiters' and a string array, a character vector, or a cell array of character vectors. If
Delimiters is a character vector, then it must represent a single delimiter.

The default list of delimiters is a list of punctuation characters.

If multiple candidate keywords appear in a document separated only by merging delimiters, then the
function merges those keywords and the merging delimiters into a single keyword.

To specify delimiters for merging, use the 'MergingDelimiters' option.

Delimiter matching is case insensitive.

Data Types: char | string | cell

MergingDelimiters — Delimiters also used for merging keywords
string array | character vector | cell array of character vectors

Delimiters also used for merging keywords, specified as the comma-separated pair consisting of
'MergingDelimiters' and a string array, a character vector, or a cell array of character vectors. If
MergingDelimiters is a character vector, then it must represent a single delimiter.

The default list of merging delimiters is the list of stop words given by the stopWords function.

If multiple candidate keywords appear in a document separated only by merging delimiters, then the
function merges those keywords and the merging delimiters into a single keyword.

To specify delimiters that should not be used for merging, use the 'Delimiters' option.

Delimiter matching is case insensitive.

Data Types: char | string | cell

Output Arguments

tbl — Extracted keywords and scores
table

Extracted keywords and scores, returned as a table with the following variables:

+ Keyword - Extracted keyword, specified as a 1-by-maxNgramLength string array, where
maxNgramLength is the number of words in the longest keyword.
* DocumentNumber - Document number containing the corresponding keyword.

* Score - Score of keyword.
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If multiple candidate keywords appear in a document separated only by merging delimiters, then the
function merges those keywords and the merging delimiters into a single keyword.

If a keyword contains multiple words, then the ith element of the corresponding string array
corresponds to the ith word of the keyword. If the keyword has fewer words that the longest

keyword, then remaining entries of the string array are the empty string "".

For more information, see “Rapid Automatic Keyword Extraction” on page 1-258.

More About

Language Considerations
The rakeKeywords function supports English, Japanese, German, and Korean text only.

The rakeKeywords function extracts keywords using a delimiter-based approach to identify
candidate keywords. The function, by default, uses punctuation characters and the stop words given
by the stopWords with language given by the language details of the input documents as delimiters.

For other languages, specify an appropriate set of delimiters using the 'Delimiters' and
'MergingDelimiters' options.

Tips

* You can experiment with different keyword extraction algorithms to see what works best with your
data. Because the RAKE keywords algorithm uses a delimiter-based approach to extract candidate
keywords, the extracted keywords can be very long. Alternatively, you can try extracting keywords
using TextRank algorithm which starts with individual tokens as candidate keywords and then
merges them when appropriate. To extract keywords using TextRank, use the
textrankKeywords function. To learn more, see “Extract Keywords from Text Data Using
TextRank”.

Algorithms
Rapid Automatic Keyword Extraction

For each document, the rakeKeywords function extracts keywords independently using the
following steps based on [1]:

1 Determine candidate keywords:

* Extract sequences of tokens between the delimiters specified by the 'Delimiters' and
'MergingDelimiters' options. The function treats each sequence as a single candidate
keyword.

2 Calculate scores for the candidate keywords:
* Create an undirected, unweighted graph with nodes corresponding to the individual tokens in
the candidate keywords.

* Add edges between nodes where tokens co-occur in a candidate keyword, including self co-
occurrences, weighted by the number of candidate keywords containing that co-occurrence.

1-258



rakeKeywords

* Score each token using the formula deg(token) / freq(token), where deg(token) is
the number of edges for the specified token and freq(token) is the number of times that
the specified token occurs in the document.

* For each candidate keyword, assign a score given by the sum of scores of the contained
tokens.

3  Extract top keywords from candidates:
» If there are multiple instances of the same pair of candidate keywords separated by the same

single merging delimiter, then merge the candidate keywords and the delimiter into a single
keyword and sum the corresponding scores.

* Return the top k keywords, where k is given by the 'MaxNumKeywords' option.
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of rakeKeywords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

References

[1] Rose, Stuart, Dave Engel, Nick Cramer, and Wendy Cowley. "Automatic keyword extraction from
individual documents." Text mining: applications and theory 1 (2010): 1-20.

See Also
extractSummary | textrankKeywords | tokenizedDocument

Topics
“Extract Keywords from Text Data Using RAKE”
“Extract Keywords from Text Data Using TextRank”

Introduced in R2020b
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rangesearch

Find nearest neighbors by edit distance range

Syntax

idx = rangesearch(eds,words,maxDist)
[idx,d] = rangesearch(eds,words,maxDist)

Description

idx = rangesearch(eds,words,maxDist) finds all the words in eds that are within distance
maxDist of the words in words.

[idx,d] = rangesearch(eds,words,maxDist) also returns the edit distances of the
corresponding words.

Examples

Find Nearest Neighbors in Range

Create an edit distance searcher and specify a maximum edit distance of 3.

vocabulary = ["MathWorks" "MATLAB" "Simulink" "text" "analytics" "analysis"];
maxDist = 3;
eds = editDistanceSearcher(vocabulary,maxDist);

Find the nearest words to "MALTAB" and "MatWorks" with edit distance less than or equal to 1.

words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 1;
idx = rangesearch(eds,words,maxDist)

idx=3x1 cell array
{1x0 double}
{I 11}
{I 51}

For "MALTAB", there are no words in the searcher within the specified range. For "MatWorks" and
"analytics", there is one result. View the corresponding word for "MatWorks" using the returned
index.

nearestWords eds.Vocabulary(idx{2})

nearestWords
"MathWorks"

Find the nearest words to "MALTAB", "MatWorks", and "analytcs" with edit distance less than or
equal to 3 and their corresponding edit distances.
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words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 3;
[idx,d] = rangesearch(eds,words,maxDist)
idx=3x1 cell array

{I 21}

{I 11}

{1x2 double}

d=3x1 cell array
{I 21}
{I 11}
{1x2 double}

For both "MALTAB" and "MatWorks", there is one word in the searcher within the specified range.
For "analytcs", there are two results. View the corresponding words for "analytcs" using the
returned indices and their edit distances.

eds.Vocabulary(idx{3})

nearestWords

nearestWords = 1x2 string
"analytics" "analysis"

d{3}
ans = 1Ix2

1 2

Input Arguments

eds — Edit distance searcher
editDistanceSearcher

Edit distance searcher, specified as an editDistanceSearcher object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

maxDist — Maximum search distance
non-negative number

Maximum search distance, specified as a non-negative number.

The function finds the indices of the words in eds whose edit distance to the elements of words are
fewer than or equal to maxDist, sorted in the ascending order edit distance.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
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Output Arguments

idx — Indices of nearest neighbors in searcher
cell array of vectors

Indices of nearest neighbors in the searcher, returned as a cell array of vectors.

idx{i} is a vector of indices of the words in eds whose edit distance to words (i) is less than or
equal to maxDist, sorted in the ascending order edit distance.

Data Types: cell

d — Edit distances to neighbors
cell array of vectors

Edit distances to neighbors, returned as a cell array of vectors.

d{1i} is a vector of edit distances between words (i) and the corresponding words in eds given by
the vocabulary indices idx{i}.

Data Types: cell

See Also
correctSpelling | editDistance | editDistanceSearcher | knnsearch | splitGraphemes |
tokenizedDocument

Topics

“Correct Spelling in Documents”

“Create Extension Dictionary for Spelling Correction”

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”

Introduced in R2019a
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ratioSentimentScores

Sentiment scores with ratio rule

Syntax

compoundScores = ratioSentimentScores(documents)
[compoundScores,positiveScores,negativeScores] = ratioSentimentScores(
documents)

= ratioSentimentScores(  ,Name,Value)

Description

Use ratioSentimentScores to evaluate sentiment in tokenized text with a ratio rule. The
ratioSentimentScores function, by default, uses the VADER sentiment lexicon.

compoundScores = ratioSentimentScores(documents) returns sentiment scores for
tokenized documents based on the ratio of positive and negative tokens. For each document where
the ratio of the positive score to negative score is larger than 1, the function returns 1. For each
document where the ratio of the negative score to positive score is larger than 1, the function returns
-1. Otherwise, the function returns 0.

[compoundScores,positiveScores,negativeScores] = ratioSentimentScores(
documents) also returns the sums of the positive and negative token scores of the documents
respectively.

= ratioSentimentScores( ,Name, Value) specifies additional options using one or

more name-value pairs.

Examples

Evaluate Sentiment in Text

Create a tokenized document.

str = [
"The book was VERY good!!!!"
"The book was terrible."];
documents = tokenizedDocument(str);

Evaluate the sentiment of the tokenized documents. A score of 1 indicates positive sentiment, a score
of -1 indicates negative sentiment, and a score of 0 indicates neutral sentiment.

compoundScores = ratioSentimentScores(documents)
compoundScores = 2x1

1

-1
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Evaluate Sentiment Using Custom Lexicon

Sentiment analysis algorithms rely on annotated lists of words called sentiment lexicons. For
example, the ratioSentimentScores function uses a sentiment lexicon with words annotated with
a sentiment score ranging from -1 to 1, where scores close to 1 indicate strong positive sentiment,
scores close to -1 indicate strong negative sentiment, and scores close to zero indicate neutral
sentiment.

If the sentiment lexicon used by the ratioSentimentScores function does not suit the data you are
analyzing, for example, if you have a domain-specific data set like medical or engineering data, then
you can use your own custom sentiment lexicon. For an example showing how to generate a domain
specific sentiment lexicon, see “Generate Domain Specific Sentiment Lexicon”.

Create a tokenized document array containing the text data to analyze.

textData = [

"This company is showing extremely strong growth."

"This other company is accused of misleading consumers."];
documents = tokenizedDocument (textData);

Load the example domain specific lexicon for finance data.

filename = "financeSentimentlLexicon.csv";

tbl = readtable(filename);

head(tbl)

ans=8x2 table

Token SentimentScore

{'innovative' } 1
{'efficiency' } 0.91852
{'strong' } 0.82362
{'efficiently'} 0.81475
{'creative' } 0.74264
{'enhance' } 0.73791
{'innovations'} 0.72985
{'improved' } 0.71476

Evaluate the sentiment using the ratioSentimentScores function and specify the custom
sentiment lexicon using the 'SentimentLexicon' option. A score of 1 indicates positive sentiment,
a score of -1 indicates negative sentiment, and a score of 0 indicates neutral sentiment.

compoundScores = ratioSentimentScores(documents, 'SentimentLexicon',tbl)

2x1

compoundScores

1
-1
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: Threshold, 0.5 sets the ratio threshold to 0.5

SentimentLexicon — Sentiment lexicon
table

Sentiment lexicon, specified as a table with the following columns:

* Token - Token, specified as a string scalar.
* SentimentScore - Sentiment score of token, specified as a numeric scalar.
The default sentiment lexicon is the VADER sentiment lexicon.

Data Types: table

Threshold — Ratio threshold
1 (default) | nonnegative scalar

Ratio threshold, specified as a nonnegative scalar.

If the ratio of the positive score to negative score of documents (i) is larger than Threshold, then
compoundScores (i) is 1. If the ratio of the negative score to positive score of documents (i) is
larger than Threshold, then compoundScores (i) is -1. Otherwise, compoundScores (i) is 0.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

compoundScores — Compound sentiment scores
numeric vector

Compound sentiment scores, returned as a numeric vector. The function returns one score for each
input document.

If the ratio of the positive score to negative score of documents (i) is larger than Threshold, then
compoundScores (i) is 1. If the ratio of the negative score to positive score of documents (i) is
larger than Threshold, then compoundScores (i) is -1. Otherwise, compoundScores (i) is 0.

positiveScores — Positive sentiment scores
numeric vector

Positive sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value positiveScores (i) corresponds to the positive sentiment score of
documents(i).
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negativeScores — Negative sentiment scores
numeric vector

Negative sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value negativeScores (i) corresponds to the negative sentiment score of
documents(i).

See Also
tokenizedDocument | vaderSentimentScores

Topics

“Analyze Sentiment in Text”

“Generate Domain Specific Sentiment Lexicon”
“Train a Sentiment Classifier”

“Create Simple Text Model for Classification”
“Analyze Text Data Containing Emojis”
“Analyze Text Data Using Topic Models”

Introduced in R2019b
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readPDFFormData

Read data from PDF forms

Syntax

data = readPDFFormData(filename)

data = readPDFFormData(filename, 'Password', password)

Description

data = readPDFFormData(filename) reads the data from a PDF form into a struct.

data = readPDFFormData(filename, 'Password', password) specifies the password for
opening the PDF form.

Examples

Read Data from PDF Form

Read the data from the form fields in weatherReportForml. pdf using readPDFFormData. The
function returns a struct containing the data from the PDF form fields.

filename = "weatherReportForml.pdf";
data = readPDFFormData(filename)

data = struct with fields:
event type: "Thunderstorm Wind"
event narrative: "Large tree down between Plantersville and Nettleton."

Read Data From Multiple Forms
Read the data from the form fields in multiple files using a file datastore.

Create a file datastore for the weather reports forms. The forms are named
"weatherReportFormN.pdf", where N is the number of the form.. Specify the file name using the
wildcard "*" to find all file names of this structure. To specify the read function to be
readPDFFormData, input this function to fileDatastore using a function handle.

fds = fileDatastore("weatherReportForm*.pdf", 'ReadFcn',@readPDFFormData)

fds =
FileDatastore with properties:
Files: {
"L ..\28\tp7999d2al\textanalytics-ex39762425\weatherReportForml. pd
" L..\28\tp7999d2al\textanalytics-ex39762425\weatherReportForm2. pd
" L..\28\tp7999d2al\textanalytics-ex39762425\weatherReportForm3. pd
... and 1 more
}
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Folders:
...\Bdoc20b 1465442 10020\ibC4001D\28\tp7999d2al\textanalytics-e;

O -

UniformRead:
ReadMode: 'file'
BlockSize: Inf
PreviewFcn: @readPDFFormData
SupportedOutputFormats: [1x16 string]
ReadFcn: @readPDFFormData
AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each PDF form.

data = [1];
while hasdata(fds)
textData = read(fds);
data = [data; textData];
end
data

data=4x1 struct array with fields:
event type
event narrative

Input Arguments

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

readPDFFormData supports AcroForm PDF files (interactive forms) only.

Data Types: string | char

password — Password to open PDF file
string scalar | character vector

Password to open PDF file, specified as a character vector or a string scalar.
Example: 'skroWhtaM'
Data Types: string | char

Output Arguments

data — Output struct
struct

Output struct. The fields of data correspond to the names of the form fields in the PDF. If the form

field names are not valid struct field names, then the function automatically edits them to construct
valid names.
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See Also
extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument |
writeTextDocument

Topics
“Extract Text Data from Files”

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a
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readWordEmbedding

Read word embedding from file

Syntax

emb = readWordEmbedding(filename)

Description

emb = readWordEmbedding(filename) reads the pretrained word embedding stored in text file
or zip file filename. The input file must be a text file with UTF-8 encoding in either the word2vec or
GloVe text embedding format, or a zip file containing a text file of this format.

If the word embedding file contains duplicate words, then the software uses the word vector
corresponding to the last duplicate entry.

Examples

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb, "king");

man = word2vec(emb, "man");

woman = word2vec(emb, "woman");

word = vec2word(emb,king - man + woman)

word =
Ilqueenll

Input Arguments

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char
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Output Arguments

emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

See Also

doc2sequence | fastTextWordEmbedding | tokenizedDocument | trainWordEmbedding |
vec2word | word2vec | wordEmbedding | wordEmbeddinglLayer | wordEncoding |
writeWordEmbedding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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Replace text in words of documents using regular expression

Syntax

newDocuments = regexprep(documents,expression, replace)

Description

Text Analytics Toolbox provides functions for common text preprocessing steps. For example, to
remove punctuation and symbol characters, use erasePunctuation or to remove stem words using
the Porter stemmer, use normalizeWords. For more information, see “Text Data Preparation”.

newDocuments = regexprep(documents,expression, replace) replaces all occurrences of
the regular expression expression in the words of documents with the text in replace.

The function matches each word independently. The match does not have to span the whole word.

Examples

Update Text in Words

Replace words that begin with "s", end "e", and have at least one character between them. To
match whole words, use """ to match the start of a word and "$" to match the end of the word.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

expression = "“s(\w+)es$";
replace = "thing";
newDocuments = regexprep(documents,expression, replace)

newDocuments =
2x1 tokenizedDocument:

6 tokens: an example of a short thing
4 tokens: a second short thing

If you do not use """ and "$", then you can match substrings of the words. Replace all vowels with
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expression = "[aeioul]";
replace = "\ ";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
2x1 tokenizedDocument:

6 tokens: n x mpl f sh rt s nt nc
4 tokens: s cnd sh rt s ntnc

Include Captured Tokens in Word Replacement

Replace variations of the word "walk" by capturing the letters that follow "walk".

documents = tokenizedDocument([
"I walk"
"they walked"
"we are walking"l)

documents =
3x1 tokenizedDocument:

2 tokens: I walk
2 tokens: they walked
3 tokens: we are walking

expression = "walk(\w*)";
replace = "ascend$l";
newDocuments = regexprep(documents,expression, replace)

newDocuments =
3x1 tokenizedDocument:

2 tokens: I ascend

2 tokens: they ascended
3 tokens: we are ascending

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a string array.
Each expression can contain characters, metacharacters, operators, tokens, and flags that specify
patterns to match in str.
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The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to construct a
generalized pattern of characters.

Metacharacter Description Example
Any single character, including white '..ain' matches sequences of five
space consecutive characters that end with 'ain"'.

[cicC5] Any character contained within the '"[rp.lain' matches 'rain' or 'pain' or
square brackets. The following ‘.ain'.
characters are treated literally: $ | &

+ 7 and - when not used to indicate a
range.

[~cicyc3] Any character not contained within the "[“*rplain' matches all four-letter
square brackets. The following sequences that end in 'ain', except 'rain'
characters are treated literally: $ | * land 'pain' and '*ain'. For example, it
+ 7?7 and - when not used to indicate a matches 'gain', 'lain’', or 'vain'.
range.

[ci-Co] Any character in the range of ¢; through |'[A-G]' matches a single character in the
Cy range of A through G.

\w Any alphabetic, numeric, or underscore |'\w*' identifies a word comprised of any
character. For English character sets, \w |[grouping of alphabetic, numeric, or underscore
is equivalent to [a-zA-Z 0-9] characters.

\W Any character that is not alphabetic, "\W*' identifies a term that is not a word
numeric, or underscore. For English comprised of any grouping of alphabetic,
character sets, \W is equivalent to [*a- |numeric, or underscore characters.
zA-Z 0-9]

\s Any white-space character; equivalent to | '\w*n\s' matches words that end with the
[ \fAn\r\t\v] letter n, followed by a white-space character.

\S Any non-white-space character; ‘\d\S"' matches a numeric digit followed by
equivalent to [ \Ff\n\r\t\v] any non-white-space character.

\d Any numeric digit; equivalent to [0-9] ‘\d*' matches any number of consecutive

digits.

\D Any nondigit character; equivalent to "\w*\D\>"' matches words that do not end

[70-9]

with a numeric digit.

\oN or \o{N}

Character of octal value N

'\o{40} ' matches the space character,
defined by octal 40.

\XN or \x{N}

Character of hexadecimal value N

'"\x2C"' matches the comma character, defined
by hex 2C.

Character Representation

Operator Description
\a Alarm (beep)
\b Backspace
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Operator Description
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\V Vertical tab
\char Any character with special meaning in regular expressions that you want to match literally
(for example, use \\ to match a single backslash)
Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Number of Times Expression Occurs Example
expr* 0 or more times consecutively. "\w*' matches a word of any length.
expr? 0 times or 1 time. "\w*(\.m)?"' matches words that optionally
end with the extension .m.
expr+ 1 or more times consecutively. '<img src="\w+\.gif">"' matches an
<img> HTML tag when the file name contains
one or more characters.
expr{m,n} At least m times, but no more than n times ‘\S{4,8} "' matches between four and eight
consecutively. non-white-space characters.
{0, 1} is equivalent to ?.
expr{m,} At least m times consecutively. '<a href="\w{l, }\.html">"' matches an
<a> HTML tag when the file name contains one
{0 B } and {1 B } are equivalent to * and +, or more characters.
respectively.
expr{n} Exactly n times consecutively. '\d{4} ' matches four consecutive digits.

Equivalent to {n, n}.

Quantifiers can appear in three modes, described in the following table. g represents any of the
quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many characters |Given the text '<tr><td><p>text</p></
as possible. td>', the expression '</7t.*>"' matches all
characters between <tr and /td>:
'<tr><td><p>text</p></td>'
exprq? Lazy expression: match as few characters as |Given the text'<tr><td><p>text</p></

necessary.

td>"', the expression '</?t.*?>"' ends each
match at the first occurrence of the closing
angle bracket (>):

|<tr>| |<td>| |</td>|
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Mode Description Example
exprq+ Possessive expression: match as much as Given the text'<tr><td><p>text</p></
possible, but do not rescan any portions of the|td>", the expression '</?t.*+>"' does not
text. return any matches, because the closing
angle bracket is captured using . *, and is not
rescanned.
Grouping Operators
Grouping operators allow you to capture tokens, apply one operator to multiple elements, or disable
backtracking in a specific group.

Grouping Description Example

Operator

(expr) Group elements of the expression and capture | ' Joh?n\s (\w*) ' captures a token that

tokens. contains the last name of any person with the
first name John or Jon.

(?:expr) Group, but do not capture tokens. "(?7:[aeiou] ["aeiou] ) {2} ' matches two
consecutive patterns of a vowel followed by a
nonvowel, such as 'anon’.

Without grouping, ' [aeiou] ["~aeiou]
{2} "matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack within the | 'A(?>.*)Z"' does not match 'AtoZ’,

group to complete the match, and do not
capture tokens.

although 'A(?:.*)Z"' does. Using the atomic
group, Z is captured using .* and is not
rescanned.

(exprl|expr2)

Match expression exprl or expression
expr2.

If there is a match with exprl, then expr2 is
ignored.

You can include ?: or ?> after the opening
parenthesis to suppress tokens or group
atomically.

‘(let|tel)\w+' matches words that start
with let or tel.

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example

~expr Beginning of the input text. "“M\w*' matches a word starting with M at
the beginning of the text.

exprs$ End of the input text. "\w*m$ ' matches words ending with m at the
end of the text.

\<expr Beginning of a word. "\<n\w*' matches any words starting with

n.
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Anchor Matches the... Example
expr\> End of a word. "\w*e\>' matches any words ending with e.
Lookaround Assertions
Lookaround assertions look for patterns that immediately precede or follow the intended match, but
are not part of the match.
The pointer remains at the current location, and characters that correspond to the test expression
are not captured or discarded. Therefore, lookahead assertions can match overlapping character
groups.
Lookaround Description Example
Assertion
expr(?=test) Look ahead for characters that match test. | '\w*(?=1ing) ' matches terms that are
followed by ing, such as 'Fly' and 'fall'
in the input text 'Flying, not falling.'
expr(?!test) Look ahead for characters that do not 'i(?!'ng) ' matches instances of the letter i
match test. that are not followed by ng.
(?<=test)expr |Look behind for characters that match ' (?<=re)\w*' matches terms that follow
test. 're',suchas 'new', 'use', and 'cycle’
in the input text ' renew, reuse,
recycle'
(?<!'test)expr |Look behind for characters that do not '(?<!\d) (\d) (?!\d) ' matches single-
match test. digit numbers (digits that do not precede or
follow other digits).
If you specify a lookahead assertion before an expression, the operation is equivalent to a logical AND.
Operation Description Example
(?=test)expr Match both test and expr. "(?=[a-z])["~aeiou] ' matches
consonants.
(?!'test)expr Match expr and do not match test. "(?![aeiou])[a-z]"' matches consonants.
Logical and Conditional Operators
Logical and conditional operators allow you to test the state of a given condition, and then use the
outcome to determine which pattern, if any, to match next. These operators support logical OR, and
if or if/else conditions.
Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?@cmd).
Dynamic expressions must return a logical or numeric value.
Conditional Operator Description Example
exprl|expr2 Match expression exprl or expression |' (let|tel)\w+' matches words that

expr2. start with let or tel.

If there is a match with exprl, then
expr2 is ignored.
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Conditional Operator

Description

Example

(?(cond)expr)

If condition cond is true, then match
expr.

'(?(?@ispc) [A-Z]:\\) ' matches a
drive name, such as C:\, when run on a
Windows® system.

(?(cond)exprl|expr2)

If condition cond is true, then match
exprl. Otherwise, match expr2.

'"Mr(s?)\..*?(?(1)her|his) \w*'
matches text that includes her when
the text begins with Mrs, or that
includes his when the text begins with
Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular expression in
parentheses. You can refer to a token by its sequence in the text (an ordinal token), or assign names

to tokens for easier code maintenance and readable output.

Ordinal Token Operator

Description

Example

(expr) Capture in a token the characters that |'Joh?n\s (\w*) ' captures a token that
match the enclosed expression. contains the last name of any person
with the first name John or Jon.
\N Match the Nth token. '<(\w+) .*>.*</\1>"' captures tokens

for HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(N)exprl|expr2)

If the Nth token is found, then match
exprl. Otherwise, match expr2.

'Mr(s?)\..*?(?(1)her|his) \w*'
matches text that includes her when
the text begins with Mrs, or that
includes his when the text begins with
Mr.

Named Token Operator

Description

Example

(?<name>expr)

Capture in a named token the
characters that match the enclosed
expression.

"(?<month>\d+) - (?<day>\d+) - (?
<yr>\d+) ' creates named tokens for
the month, day, and year in an input
date of the form mm-dd-yy.

\ k<name>

Match the token referred to by name.

'<(?<tag>\w+) . *>. *</\k<tag>>"
captures tokens for HTML tags, such as
'title’ from the text '<title>Some
text</title>"'.

(?(name)exprl|expr2)

If the named token is found, then
match exprl. Otherwise, match
expr2.

'"Mr(?<sex>s?)\..*?(?(sex)her|
his) \w*' matches text that includes
her when the text begins with Mrs, or
that includes his when the text begins
with Mr.

Note If an expression has nested parentheses, MATLAB® captures tokens that correspond to the
outermost set of parentheses. For example, given the search pattern ' (and(y|rew))', MATLAB
creates a token for 'andrew' but not for 'y' or 'rew'.
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Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to determine
the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example

(??expr) Parse expr and include the resulting term | '~ (\d+) ((??\\w{$1})) ' determines
in the match expression. how many characters to match by reading

a digit at the beginning of the match. The
When parsed, expr must correspond to @ | dynamic expression is enclosed in a
complete, valid regular expression. second set of parentheses so that the
Dynamic expressions that use the backslash resulting match is captured in a token. For
escape character (\) require two instance, matching '5XXXXX' captures
backslashes: one for the initial parsing of |tokens for '5' and ' XXXXX"'.
expr, and one for the complete match.

(??@cmd) Execute the MATLAB command "(.{2,}).?2(??@fliplr($1)) ' finds
represented by cmd, and include the output |palindromes that are at least four
returned by the command in the match characters long, such as 'abba’.
expression.

(?@cmd) Execute the MATLAB command "“\w*? (\w) (?@disp($1))\1\w*'

represented by cmd, but discard any output
the command returns. (Helpful for
diagnosing regular expressions.)

matches words that include double letters
(such as pp), and displays intermediate
results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator

Description

$& or $0 Portion of the input text that is currently a match
$° Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $' ' to represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd
Comments
Characters Description Example
(?#comment) Insert a comment in the regular expression. | ' (?# Initial digit)\<\d\w+'

The comment text is ignored when
matching the input.

includes a comment, and matches words
that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a search flag
within an expression is to pass an option input argument.
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Flag Description

(?-1) Match letter case (default for regexp and regexprep).

(?1) Do not match letter case (default for regexpi).

(?s) Match dot (.) in the pattern with any character (default).

(?-5s) Match dot in the pattern with any character that is not a newline character.

(?-m) Match the ~ and $ metacharacters at the beginning and end of text (default).

(?m) Match the ~ and $ metacharacters at the beginning and end of a line.

(?-x) Include space characters and comments when matching (default).

(?x) Ignore space characters and comments when matching. Use '\ ' and '\#' to
match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(71)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(71i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.

Data Types: char | cell | string

replace — Replacement text
character vector | cell array of character vectors | string array

Replacement text, specified as a character vector, a cell array of character vectors, or a string array,

as follows:

* If replace is a single character vector and expression is a cell array of character vectors, then
regexprep uses the same replacement text for each expression.

* If replaceis a cell array of N character vectors and expression is a single character vector,
then regexprep attempts N matches and replacements.

» Ifboth replace and expression are cell arrays of character vectors, then they must contain the
same number of elements. regexprep pairs each replace element with its corresponding
element in expression.

The replacement text can include regular characters, special characters (such as tabs or new lines),
or replacement operators, as shown in the following tables.

Replacement Operator

Description

$& or $0 Portion of the input text that is currently a match

$° Portion of the input text that precedes the current match

$' Portion of the input text that follows the current match (use $' ' to represent $')
$N Nth token

$<name> Named token

${cmd} Output returned when MATLAB executes the command, cmd
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Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char Any character with special meaning in regular expressions that you want to match literally

(for example, use \\ to match a single backslash)

Data Types: char | cell | string

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Tips

» Text Analytics Toolbox provides functions for common text preprocessing steps. For example, to
remove punctuation and symbol characters, use erasePunctuation or to remove stem words
using the Porter stemmer, use normalizeWords. For more information, see “Text Data
Preparation”.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | normalizeWords |
removeLongWords | removeShortWords | removeWords | replace | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeDocument

Remove documents from bag-of-words or bag-of-n-grams model

Syntax

newBag = removeDocument(bag, idx)

Description

newBag = removeDocument(bag, idx) removes the documents with indices specified by idx from
the bag-of-words or bag-of-n-grams model bag. If the removed documents contain words or n-grams
that do not appear in the remaining documents, then the function also removes these words or n-
grams from bag.

Examples

Remove Documents from Bag-of-Words Model

Remove selected documents from a bag-of-words model.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"
"a third example"
"a final sentence"]);
bag = bag0fWords(documents)

bag =
bag0fWords with properties:

Counts: [4x9 double]

Vocabulary: [1x9 string]
NumWords: 9
NumDocuments: 4

Remove the first and third documents from bag.

idx = [1 3];
newBag = removeDocument (bag,idx)

newBag =
bag0fWords with properties:

Counts: [2x5 double]
Vocabulary: ["a" "short" "sentence" "second" "final"]

NumWords: 5
NumDocuments: 2

Remove the same documents using logical indices.
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idx = logical([1 0 1 0]);
newBag = removeDocument(bag,idx)

newBag =
bagOfWords with properties:

Counts: [2x5 double]
Vocabulary: ["a" "short" "sentence" "second" "final"]
NumWords: 5
NumDocuments: 2

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object.

idx — Indices of documents to remove
vector of numeric indices | vector of logical indices

Indices of documents to remove, specified as a vector of numeric indices or a vector of logical indices.

Example: [2 4 6]
Example: [0 1 0 1 0 1]

Output Arguments

newBag — Output model
bagO0fWords object | bagOfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of newBag is
the same as the type of bag.

See Also
addDocument | bag0fNgrams | bag0fWords | removeEmptyDocuments | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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removeEmptyDocuments

Remove empty documents from tokenized document array, bag-of-words model, or bag-of-n-grams
model

Syntax

newDocuments = removeEmptyDocuments(documents)
newBag = removeEmptyDocuments(bag)
[ ,1dx] = removeEmptyDocuments( )

Description

newDocuments = removeEmptyDocuments(documents) removes documents which have no
words from documents.

newBag = removeEmptyDocuments(bag) removes documents which have no words or n-grams
from the bag-of-words or bag-of-n-grams model bag.

[ ,1dx] = removeEmptyDocuments( ) also returns the indices of the removed
documents.

Examples

Remove Empty Documents from Array
Remove documents containing no words from an array of tokenized documents.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument ([
"an example of a short sentence"

"a second short sentence"
IIII])

documents =
4x1 tokenizedDocument:

6 tokens: an example of a short sentence
0 tokens:

4 tokens: a second short sentence

0 tokens:

Remove the empty documents.
newDocuments = removeEmptyDocuments(documents)

newDocuments =
2x1 tokenizedDocument:
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6 tokens: an example of a short sentence
4 tokens: a second short sentence

Remove Empty Documents from Bag-of-Words Model
Remove documents containing no words from bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument ([
"An example of a short sentence."

"A second short sentence."

IIII]);
bag = bag0OfWords(documents)

bag =
bagOfWords with properties:

Counts: [4x9 double]

Vocabulary: [1x9 string]
NumWords: 9
NumDocuments: 4

Remove the empty documents from the bag-of-words model.
newBag = removeEmptyDocuments(bag)

newBag =
bag0fWords with properties:

Counts: [2x9 double]

Vocabulary: [1x9 string]
NumWords: 9
NumDocuments: 2

Remove Documents and Corresponding Labels

Remove documents containing no words from an array and use the indices of removed documents to
remove the corresponding labels also.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument ([
"an example of a short sentence"

"a second short sentence"

1)

documents =
4x1 tokenizedDocument:
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6 tokens: an example of a short sentence
0 tokens:

4 tokens: a second short sentence

0 tokens:

Create a vector of labels.

labels

["T"; "FU UFY; T

labels
IITII
IIFII
IIFII
IITII

4x1 string

Remove the empty documents and get the indices of the removed documents.
[newDocuments, idx] = removeEmptyDocuments(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence
idx = 2x1
2
4

Remove the corresponding labels from labels.
labels(idx) = []
labels = 2x1 string

||T||
||F||

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object.
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Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of newBag is
the same as the type of bag.

idx — Indices of removed documents
vector of positive integers

Indices of removed documents, returned as a vector of positive integers.

See Also
addDocument | bag0fNgrams | bag0fWords | removeDocument | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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removelnfrequentNgrams

Remove infrequently seen n-grams from bag-of-n-grams model

Syntax

newBag = removelInfrequentNgrams(bag, count)

newBag = removelInfrequentNgrams(bag, count, 'NgramLengths', lengths)
newBag = removelInfrequentNgrams(  ,'IgnoreCase’',true)
Description

newBag = removelInfrequentNgrams(bag,count) removes the n-grams that appear at most
count times in total from the bag-of-n-grams model bag. The function, by default, is case sensitive.

newBag = removelInfrequentNgrams(bag,count, 'NgramLengths', lengths) only removes n-
grams with lengths specified by lengths. The function, by default, is case sensitive.

newBag = removeInfrequentNgrams ( , 'IgnoreCase', true) removes the n-grams that
appear at most count times ignoring case. If n-grams differ only by case, then the corresponding
counts are merged.

Examples

Remove Infrequent N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-n-grams model. Specify to count bigrams (pairs of words) and trigrams (triples of
words).

bag = bagOfNgrams(documents, 'NgramLengths',[2 31)

bag =
bag0OfNgrams with properties:

Counts: [154x18022 double]
Vocabulary: [1x3092 string]
Ngrams: [18022x3 string]
NgramLengths: [2 3]
NumNgrams: 18022
NumDocuments: 154
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Remove n-grams of any length that appear two or fewer times in total.

bag = removeInfrequentNgrams(bag,?2)

bag =
bagOfNgrams with properties:

Counts: [154x103 doublel]
Vocabulary: [1x73 string]
Ngrams: [103x3 string]
NgramLengths: [2 3]
NumNgrams: 103
NumDocuments: 154

Remove bigrams that appear four or fewer times in total.

bag = removeInfrequentNgrams(bag,4, 'NgramLengths',2)

bag =

bagOfNgrams with properties:

Counts: [154x41 double]
Vocabulary: [1x30 string]
Ngrams: [41x3 string]
NgramLengths: [2 3]

NumNgrams: 41
NumDocuments: 154

Input Arguments

bag — Input bag-of-n-grams model
bag0fNgrams object

Input bag-of-n-grams model, specified as a bag0fNgrams object.

count — Count threshold
positive integer

Count threshold, specified as a positive integer. The function removes the n-grams that appear count
times in total or fewer.

lengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as a positive integer or a vector of positive integers.

If you specify lengths, the function removes infrequent n-grams of the specified lengths only. If you
do not specify lengths, then the function removes infrequent n-grams regardless of length.

Example: [1 2 3]

1-289



1 Functions

Output Arguments

newBag — Output bag-of-n-grams model
bag0fNgrams object

Output bag-of-n-grams model, returned as a bag0fNgrams object.

See Also
bagO0fNgrams | bag0fWords | removeEmptyDocuments | removeInfrequentWords |
removeNgrams | tfidf | tokenizedDocument | topkngrams

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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removelnfrequentWords

Remove words with low counts from bag-of-words model

Syntax

removeInfrequentWords(bag, count)
removeInfrequentWords (bag, count, 'IgnoreCase’', true)

newBag
newBag

Description

newBag = removelInfrequentWords(bag,count) removes the words that appear at most count
times in total from the bag-of-words model bag. The function, by default, is case sensitive.

newBag = removelInfrequentWords(bag,count, 'IgnoreCase', true) removes the words that
appear at most count times in total ignoring case. If words differ only by case, then the
corresponding counts are merged.

Examples

Remove Infrequent Words
Remove the words that appear two times or fewer from a bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"
"another example"
"a short example"]);

bag = bag0fWords(documents)

bag =
bagO0fWords with properties:

Counts: [4x8 double]

Vocabulary: [1x8 string]
NumWords: 8
NumDocuments: 4

Remove the words that appear two times or fewer from the bag-of-words model.

count = 2;
newBag = removelInfrequentWords(bag, count)

newBag =
bagOfWords with properties:

Counts: [4x3 double]
Vocabulary: ["example" "a" "short"]
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NumWords: 3
NumDocuments: 4

Input Arguments

bag — Input bag-of-words model
bag0fWords object

Input bag-of-words model, specified as a bag0fWords object.

count — Count threshold to remove words
positive integer

Count threshold to remove words, specified as a positive integer. The function removes the words
that appear count times in total or fewer.

See Also
bagO0fNgrams | bag0OfWords | removeEmptyDocuments | removeInfrequentNgrams |
removeWords | tfidf | tokenizedDocument | topkwords

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”

Introduced in R2017b
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removeLongWords

Remove long words from documents or bag-of-words model

Syntax

newDocuments = removeLongWords(documents, len)
newBag = removelLongWords(bag, len)

Description

newDocuments = removelLongWords(documents,len) removes words of length len or greater
from documents.

newBag = removelLongWords(bag, len) removes words of length len or greater from the
bagO0fWords object bag.

Examples

Remove Long Words from Document

Remove the words with seven or greater characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removelLongWords(document,7)

newDocument =
tokenizedDocument:

4 tokens: An of a short

Remove Long Words from Bag-of-Words Model
Remove the words with seven or greater characters from a bag-of-words model.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removelLongWords(bag,7)

newBag =
bagOfWords with properties:

Counts: [2x5 double]
Vocabulary: ["an" "of" "a" "short" "second"]
NumwWords: 5
NumDocuments: 2

1-293



1 Functions

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bag0fWords object.

len — Minimum length of words to remove
positive integer

Minimum length of words to remove, specified as a positive integer. The function removes words with
len or greater characters.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagO0fWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also

bagOfNgrams | bag0OfWords | normalizeWords | removeShortWords | removeStopWords |
removeWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeNgrams

Remove n-grams from bag-of-n-grams model

Syntax

newBag removeNgrams (bag,ngrams)
newBag removeNgrams (bag,ngrams, 'IgnoreCase’', true)
newBag = removeNgrams (bag, idx)

Description

newBag = removeNgrams(bag,ngrams) removes the specified n-grams from the bag-of-n-grams
model bag. The function, by default, is case sensitive.

newBag = removeNgrams(bag,ngrams, 'IgnoreCase', true) removes n-grams ignoring case.

newBag = removeNgrams(bag,idx) specifies n-grams by numeric or logical indices in
bag.Ngrams. This syntax is the same as newBag = removeNgrams (bag,bag.Ngrams(idx,:)).

Examples

Remove N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create bag-of-n-grams model.
bag = bagOfNgrams(documents)

bag =
bagOfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

View the top five n-grams.

topkngrams(bag,5)
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ans=5x3 table

Ngram Count NgramLength
"thou" "art" 34 2
"mine" "eye" 15 2
"thy" "self" 14 2
"thou" "dost" 13 2
"mine" “own" 13 2

Remove the n-grams [ "thou" "art"] and ["thou" "dost"] from the model. View the new top 5
n-grams.

ngrams = [...
Ilthoull Ilartll
nthoull "dOS‘t"] ;
bag = removeNgrams(bag,ngrams);

topkngrams(bag,5)
ans=5x3 table
Ngram Count NgramLength

"mine" "eye" 15 2
“thy" "self" 14 2
"mine" "own" 13 2
"thy" "sweet" 12 2
“thy" “love" 11 2

Remove N-Grams from Bag-of-N-Grams Model by Index

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create bag-of-n-grams model.

bagO0fNgrams (documents)

bag

bag =
bagOfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
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NumDocuments: 154

View the first ten n-grams in the model.
bag.Ngrams(1:10, :)

ans = 10x2 string

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"
"beautys" "rose"
"rose" "might"
"might" "never"
"never" "die"

"die" "riper"

Remove the 9th and 10th n-grams from the model. View the new list of the first ten n-grams.

idx [9 10];
bag removeNgrams (bag, idx) ;
bag.Ngrams(1:10, :)

ans = 10x2 string

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"
"beautys" "rose"
"rose" "might"
"might" "never"
"riper" "time"
"time" "decease"

Input Arguments

bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bag0fNgrams object.

ngrams — N-grams to remove
string array | character vector | cell array of character vectors

N-grams to remove, specified as a string array, character vector, or a cell array of character vectors.

If ngrams is a string array or cell array, then it has size NumNgrams-by-maxN , where NumNgrams is
the number of n-grams, and maxN is the length of the largest n-gram. If ngrams is a character vector,
then it represents a single word (unigram).

The value of ngrams (i, j) is the jth word of the ith n-gram. If the number of words in the ith n-
gram is less than maxN, then the remaining entries of the ith row of ngrams are empty.
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Example: ["An" ""; "An example"; "example" ""]

Data Types: string | char | cell

idx — Indices of n-grams to remove
vector of numeric indices | vector of logical indices

Indices of n-grams to remove, specified as a vector of numeric indices or a vector of logical indices.
The indices in idx correspond to the rows of the bag.Ngrams.

Example: [1 5 10]

See Also
bagO0fNgrams | bag0fWords | removeEmptyDocuments | removeInfrequentNgrams |
removeWords | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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removeShortWords

Remove short words from documents or bag-of-words model

Syntax

newDocuments = removeShortWords(documents, len)
newBag = removeShortWords(bag, len)

Description

newDocuments = removeShortWords(documents,len) removes words of length len or less
from documents.

newBag = removeShortWords(bag, len) removes words of length Len or less from the
bagO0fWords object bag.

Examples

Remove Short Words from Document

Remove the words with two or fewer characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeShortWords(document,2)

newDocument =
tokenizedDocument:

3 tokens: example short sentence

Remove Short Words from Bag-of-Words Model

Remove the words with two or fewer characters from a bag-of-words model.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeShortWords(bag,2)

newBag =
bagOfWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence" "second"]
NumWords: 4
NumDocuments: 2
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bag0fWords object.

len — Maximum length of words to remove
positive integer

Maximum length of words to remove, specified as a positive integer. The function removes words with
len or fewer characters.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also

bagOfNgrams | bag0OfWords | normalizeWords | removeLongWords | removeWords | stopWords
| tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeStopWords

Remove stop words from documents

Syntax

newDocuments = removeStopWords(documents)

newDocuments = removeStopWords(documents, 'IgnoreCase', false)
Description

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data. Use this function
to remove stop words before analysis.

The function supports English, Japanese, German, and Korean text. To learn how to use
removeStopWords for other languages, see “Language Considerations” on page 1-303.

newDocuments = removeStopWords (documents) removes the stop words from the
tokenizedDocument array documents. The function, by default, uses the stop word list given by
the stopWords function according to the language details of documents and is case insensitive.

To remove a custom list of words, use the removeWords function.

newDocuments = removeStopWords(documents, 'IgnoreCase', false) removes stop words
with case matching the stop word list given by the stopWords function.

Tip Use removeStopWords before using the normalizeWords function as removeStopWords uses
information that is removed by this function.

Examples

Remove Stop Words from Documents

Remove the stop words from an array of documents using removeStopWords. The
tokenizedDocument function detects that the documents are in English, so removeStopWords
removes English stop words.

documents = tokenizedDocument ([

"an example of a short sentence"

"a second short sentence"]);
newDocuments = removeStopWords(documents)

newDocuments =
2x1 tokenizedDocument:

3 tokens: example short sentence
3 tokens: second short sentence
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Remove Japanese Stop Words

Tokenize Japanese text using tokenizedDocument. The function automatically detects Japanese
text.

str = [
"ZCIERMNEDT, ETHREONATT
"TCENDBEET—FEAAL. SEOFTY LITERARDZ Z EAHEL, "
"FAIFSEETY, FAFEEEZHATUHET, "1;

documents = tokenizedDocument(str);

Remove stop words using removeStopWords. The function uses the language details from
documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents =
3x1 tokenizedDocument:

4 tokens: #M . &TH EOHM
10 tokens: % BE T—42 FHE . % ‘Y LT ARD HE .
5 tokens: &% , EIE %X .

Remove German Stop Words from Documents

Tokenize German text using tokenizedDocument. The function automatically detects German text.

str = [
"Guten Morgen. Wie geht es dir?"
"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?
6 tokens: Heute wird ein guter Tag .

Remove stop words using the removeStopWords function. The function uses the language details
from documents to determine which language stop words to remove.

documents removeStopWords (documents)

documents =
2x1 tokenizedDocument:

5 tokens: Guten Morgen . geht ?
5 tokens: Heute wird guter Tag .
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

More About

Language Considerations

The stopWords and removeStopWords functions support English, Japanese, German, and Korean
stop words only.

To remove stop words from other languages, use removeWords and specify your own stop words to
remove.

Algorithms
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of removeStopWords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

See Also
bagO0fWords | normalizeWords | removelLongWords | removeShortWords | removeWords |
stopWords | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2018b
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Remove selected words from documents or bag-of-words model

Syntax

newDocuments = removeWords(documents,words)
newBag = removeWords(bag,words)
newDocuments = removeWords(  , 'IgnoreCase',true)

newDocuments = removeWords(documents,idx)
newBag = removeWords (bag,idx)

Description

newDocuments = removeWords (documents,words) removes the specified words from
documents. The function, by default, is case sensitive.

newBag = removeWords (bag,words) removes the specified words from the bag-of-words model
bag. The function, by default, is case sensitive.

newDocuments = removeWords ( , 'IgnoreCase',true) removes words ignoring case using
any of the previous syntaxes.

newDocuments = removeWords(documents,idx) removes words by specifying the numeric or
logical indices idx of the words in documents.Vocabulary. This syntax is the same as
newDocuments = removeWords(documents,documents.Vocabulary(idx)).

newBag = removeWords (bag,idx) removes words by specifying the numeric or logical indices
idx of the words in bag.Vocabulary. This syntax is the same as newBag =
removeWords (bag,bag.Vocabulary(idx)).

Examples

Remove Words from Documents
Remove words from an array of documents by inputting a string array of words to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

Remove the words "short" and "second".

words = ["short" "second"];
newDocuments = removeWords(documents,words)

newDocuments =
2x1 tokenizedDocument:
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5 tokens: an example of a sentence
2 tokens: a sentence

Remove Custom List of Stop Words from Documents

To remove the default list of stop words using the language details of documents, use
removeStopWords.

To remove a custom list of stop words, use the removeWords function. You can use the stop word list
returned by the stopWords function as a starting point.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

View the first few documents.

documents(1:5)

ans =
5x1 tokenizedDocument:

70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair ti
71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair

Create a list of stop words starting with the output of the stopWords function.

customStopWords = [stopWords "thy" "thee" "thou" "dost" "doth"];

Remove the custom stop words from the documents and view the first few documents.

documents

= removeWords (documents, customStopWords) ;
documents(1:5)

ans =
5x1 tokenizedDocument:

62 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
61 tokens: forty winters shall besiege brow dig deep trenches beautys field youths proud liv
52 tokens: look glass tell face viewest time face form another whose fresh repair renewest b
52 tokens: unthrifty loveliness why spend upon self beautys legacy natures bequest gives not
59 tokens: hours gentle work frame lovely gaze every eye dwell play tyrants same unfair fair’
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Remove Words from Documents by Index
Remove words from documents by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.
documents = tokenizedDocument([

"I love MATLAB"

"I love MathWorks"])

documents =
2x1 tokenizedDocument:

3 tokens: I love MATLAB
3 tokens: I love MathWorks

View the vocabulary of documents.
documents.Vocabulary

ans = 1x4 string
"I "love" "MATLAB" "MathWorks"

Remove the first and third words of the vocabulary from the documents by specifying the numeric
indices [1 3].

idx = [1 31;

newDocuments removeWords (documents,idx)

newDocuments =
2x1 tokenizedDocument:

1 tokens: love
2 tokens: love MathWorks

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newDocuments = removeWords (documents,idx)

newDocuments =
2x1 tokenizedDocument:

1 tokens: love
2 tokens: love MathWorks
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Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to removeWords.
Stop words are words such as "a", "the", and "in" which are commonly removed from text before
analysis.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeWords(bag, stopWords)

newBag =
bag0fWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence
NumWords: 4
NumDocuments: 2

"second"]

Remove Words from Bag-of-Words Model by Index
Remove words from a bag-of-words model by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
"I love MATLAB"
"I love MathWorks"1);
bagO0fWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [2x4 double]
Vocabulary: ["I" "love" "MATLAB" "MathWorks"]
NumWords: 4
NumDocuments: 2

View the vocabulary of bag.
bag.Vocabulary

ans = 1x4 string
nyn "love" "MATLAB" "MathWorks"

Remove the first and third words of the vocabulary from the bag-of-words model by specifying the
numeric indices [1 3].

idx = [1 3];
newBag = removeWords(bag, idx)

newBag =
bagOfWords with properties:
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Counts: [2x2 double]
Vocabulary: ["love" "MathWorks"]
NumWords: 2
NumDocuments: 2

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newBag = removeWords(bag,idx)

newBag =
bag0fWords with properties:

Counts: [2x2 double]
Vocabulary: ["love" "MathWorks"]

NumWords: 2
NumDocuments: 2

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagO0fWords object

Input bag-of-words model, specified as a bag0fWords object.

words — Words to remove
string vector | character vector | cell array of character vectors

Words to remove, specified as a string vector, character vector, or cell array of character vectors. If
you specify words as a character vector, then the function treats it as a single word.

Data Types: string | char | cell

idx — Indices of words in vocabulary to remove
vector of numeric indices | vector of logical indices

Indices of words to remove, specified as a vector of numeric indices or a vector of logical indices. The
indices in 1dx correspond to the locations of the words in the Vocabulary property of the input
documents or bag-of-words model.

Example: [1 5 10]

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.
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newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also

bagOfNgrams | bag0OfWords | normalizeWords | removeEmptyDocuments |
removeInfrequentWords | removeLongWords | removeNgrams | removeShortWords |
stopWords | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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Replace substrings in documents

Syntax

newDocuments = replace(documents,old, new)

Description

newDocuments = replace(documents,old, new) replaces all occurrences of the substring or
pattern old in documents with new.

Tip Use the replace function to replace substrings of the words in documents by specifying
substrings or patterns. To replace entire words and n-grams in documents, use the replaceWords
and replaceNgrams functions respectively.

Examples

Replace Substrings in Documents

Replace words in a document array.

documents = tokenizedDocument([
"an extreme example"
"another extreme example"])

documents =
2x1 tokenizedDocument:

3 tokens: an extreme example

3 tokens: another extreme example

newDocuments = replace(documents, "example", "sentence")

newDocuments =
2x1 tokenizedDocument:

3 tokens: an extreme sentence

3 tokens: another extreme sentence

Replace substrings of the words.
newDocuments = replace(documents, "ex","X-")

newDocuments =
2x1 tokenizedDocument:

3 tokens: an X-treme X-ample
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3 tokens: another X-treme X-ample

Replace Substrings in Documents Using Patterns
Remove digits from a document using a digits pattern.

Create an array of tokenized documents.

textData = [
"Text Analytics Toolbox provides over 50 functions to analyze text data."
"The bm25Similarity function measures document similarity."];

documents = tokenizedDocument (textData);

Replace instances of consecutive digits with the token "<NUMBER>" using the replace function.
Specify a digits pattern using the digitsPattern function.

pat = digitsPattern;
newDocuments = replace(documents,pat, "<NUMBER>")

newDocuments =
2x1 tokenizedDocument:

12 tokens: Text Analytics Toolbox provides over <NUMBER> functions to analyze text data .

7 tokens: The bm<NUMBER>Similarity function measures document similarity .

Notice that the function replaces the digits in the token "bm25Similarity".

To replace tokens consisting entirely of digits, use the replace function and specify a pattern that
also includes text boundaries. Specify text boundaries using the textBoundary function.

pat = textBoundary + digitsPattern + textBoundary;
newDocuments = replace(documents,pat, "<NUMBER>")

newDocuments =
2x1 tokenizedDocument:

12 tokens: Text Analytics Toolbox provides over <NUMBER> functions to analyze text data .

7 tokens: The bm25Similarity function measures document similarity .

In this case, the function does not replace the digits in the token "bm25Similarity".

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

old — Substring or pattern to replace
string array | character vector | cell array of character vectors | pattern array
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Substring or pattern to replace, specified as one of the following:

* String array

* Character vector

* Cell array of character vectors
* pattern array

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character vectors.

Data Types: string | char | cell

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.
See Also

bagO0fWords | decodeHTMLEntities | normalizeWords | regexprep | replaceNgrams |
replaceWords | tokenizedDocument

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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replaceWords

Replace words in documents

Syntax

newDocuments = replaceWords(documents,oldWords, newWords)

newDocuments = replaceWords(documents,oldWords, newWords, 'IgnoreCase’,true)
Description

newDocuments = replaceWords(documents,oldWords, newWords) updates the specified
documents by replacing the words in oldWords with the corresponding words in newWords. The
function, by default, is case sensitive.

newDocuments = replaceWords(documents,oldWords,newWords, 'IgnoreCase',true)
replaces the words in oldWords ignoring case.

Examples

Replace Words in Documents
Use the replaceWords function to replace shorthand words with their corresponding full words.

Create an array of tokenized documents.

str = [
"Increased activity Mon to Fri."
"Reduced activity Sat to Sun."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

6 tokens: Increased activity Mon to Fri .
6 tokens: Reduced activity Sat to Sun .

Replace the shorthand words with their corresponding full words.

oldwWords = ["Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"];
newWords = ["Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday"];
documents = replaceWords(documents,oldWords, newWords)

documents =
2x1 tokenizedDocument:

6 tokens: Increased activity Monday to Friday .
6 tokens: Reduced activity Saturday to Sunday .
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

oldWords — Words to replace
string array | character vector | cell array of character vectors

Words to replace, specified as a string array, character vector, or cell array of character vectors.

Data Types: string | char | cell

newWords — New words
string array | character vector | cell array of character vectors

New words, specified as a string array, character vector, or cell array of character vectors.

newWords must contain one word or be the same size as oldWords. If newwWords contains only one
word, then the function replaces all the words in oldWords with this word.

Data Types: string | char | cell

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Tips

* To replace words in documents by specifying pattern arrays, use the replace function.

See Also
decodeHTMLEntities | normalizeWords | replaceNgrams | tokenizedDocument

Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2019a
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replaceNgrams

Replace n-grams in documents

Syntax

newDocuments = replaceNgrams(documents,oldNgrams,newNgrams)
newDocuments replaceNgrams (documents,oldNgrams,newNgrams, 'IgnoreCase', true)

Description

newDocuments = replaceNgrams(documents,oldNgrams,newNgrams) updates the specified
documents by replacing the n-grams oldNgrams with the corresponding n-grams in newNgrams. The
function, by default, is case sensitive.

newDocuments = replaceNgrams(documents,oldNgrams,newNgrams, 'IgnoreCase', true)
replaces the n-grams oldNgrams ignoring case.

Examples

Replace N-grams In Documents
Use the replaceNgrams function to replace abbreviations with their corresponding expanded forms.

Create an array of tokenized documents.

str = [ ...
“Currently in Cambridge, MA."
"Next stop, NY!"];

documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

6 tokens: Currently in Cambridge , MA .
5 tokens: Next stop , NY !

Replace the tokens "MA" and "NY" with "Massachusetts" and ["New" "York"] respectively. If
the n-grams have different lengths, you must pad the rows with the empty string "". In this case, you
must pad "Massachusetts" with a single empty string "".

oldNgrams = [

TMA"
"NY"];

newNgrams = [
"Massachusetts" ""

IINeWII IIYorkII];
documents = replaceNgrams(documents,oldNgrams, newNgrams)

documents =
2x1 tokenizedDocument:
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6 tokens: Currently in Cambridge , Massachusetts .
6 tokens: Next stop , New York !

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

oldNgrams — N-grams to replace
string array | character vector | cell array of character vectors

N-grams to replace, specified as a string array, character vector, or a cell array of character vectors.

If oldNgrams is a string array or cell array, then it has size NumNgrams-by-maxN , where NumNgrams
is the number of n-grams, and maxN is the length of the largest n-gram. If oldNgrams is a character
vector, then it represents a single word (unigram).

The value of oldNgrams (i, j) is the jth word of the ith n-gram. If the number of words in the ith
n-gram is less than maxN, then the remaining entries of the ith row of oldNgrams must be padded

with the empty string "".

For example, to specify both the unigram "Massachusetts", and the bigram ["New" "York"],
specify the 2-by-2 string array [ "Massachusetts" ""; "New" "York"], where

"Massachusetts" is padded with a single empty string "".
Data Types: string | char | cell

newNgrams — New n-grams
string array | character vector | cell array of character vectors

New n-grams, specified as a string array, character vector, or a cell array of character vectors.

If newNgrams is a string array or cell array, then it has size NumNgrams-by-maxN , where NumNgrams
is the number of n-grams, and maxN is the length of the largest n-gram. If newNgrams is a character
vector, then it represents a single word (unigram).

The value of newNgrams (i, j) is the jth word of the ith n-gram. If the number of words in the ith
n-gram is less than maxN, then the remaining entries of the ith row of newNgrams are empty.

newNgrams must have one row, or the same number of rows as oldNgrams.

For example, to specify both the unigram "Massachusetts", and the bigram ["New" "York"],
specify the 2-by-2 string array [ "Massachusetts” ""; "New" "York"], where

"Massachusetts" is padded with a single empty string "".

Data Types: string | char | cell
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Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also

decodeHTMLEntities | normalizeWords | removeWords | replaceWords |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2019a
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resume

Resume fitting LDA model

Syntax

updatedMdl = resume(ldaMdl, bag)
updatedMdl = resume(ldaMdl, counts)
updatedMdl = resume( _ ,Name,Value)
Description

updatedMdl = resume(ldaMdl,bag) returns an updated LDA model by training for more
iterations on the bag-of-words or bag-of-n-grams model bag. The input bag must be the same model
used to fit LdaMd1.

updatedMdl = resume(ldaMdl, counts) returns an updated LDA model by training for more
iterations on the documents represented by the matrix of word counts counts. The input counts
must be the same matrix used to fit LdaMd1.

updatedMdl = resume( ,Name, Value) specifies additional options using one or more name-
value pair arguments.

Examples

Resume Fitting of LDA Model

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
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NumDocuments: 154

Fit an LDA model with four topics. The resume function does not support the default solver for

fitlda. Set the LDA solver to be collapsed variational Bayes, zeroth order.

numTopics = 4;

mdl = fitlda(bag,numTopics, 'Solver', 'cvb0")

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.00 | | 3.292e+03 | 1.000 | 0 |
| 1| 0.01 | 1.4970e-01 | 1.147e+03 | 1.000 | 0 |
| 2 | 0.00 | 7.1229e-03 | 1.091e+03 | 1.000 | 0 |
| 3| 0.00 | 8.1261e-03 | 1.031e+03 | 1.000 | 0 |
| 4 | 0.00 | 8.8626e-03 | 9.703e+02 | 1.000 | 0 |
| 5| 0.01 | 8.5486e-03 | 9.154e+02 | 1.000 | 0 |
| 6 | 0.01 | 7.4632e-03 | 8.703e+02 | 1.000 | 0 |
| 7 | 0.01 | 6.0480e-03 | 8.356e+02 | 1.000 | 0 |
| 8 | 0.01 | 4.5955e-03 | 8.102e+02 | 1.000 | 0 |
| 9 | 0.00 | 3.4068e-03 | 7.920e+02 | 1.000 | 0 |
| 10 | 0.00 | 2.5353e-03 | 7.788e+02 | 1.000 | 0 |
| 11 | 0.01 | 1.9089e-03 | 7.690e+02 | 1.222 | 10 |
| 12 | 0.01 | 1.2486e-03 | 7.626e+02 | 1.176 | 7 |
| 13 | 0.01 | 1.1243e-03 | 7.570e+02 | 1.125 | 7 |
| 14 | 0.01 | 9.1253e-04 | 7.524e+02 | 1.079 | 7 |
| 15 | 0.00 | 7.5878e-04 | 7.486e+02 | 1.039 | 6 |
| 16 | 0.00 | 6.6181e-04 | 7.454e+02 | 1.004 | 6 |
| 17 | 0.00 | 6.0400e-04 | 7.424e+02 | 0.974 | 6 |
| 18 | 0.00 | 5.6244e-04 | 7.396e+02 | 0.948 | 6 |
| 19 | 0.00 | 5.0548e-04 | 7.372e+02 | 0.926 | 5 |
| 20 | 0.00 | 4.2796e-04 | 7.351le+02 | 0.905 | 5 |
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 21 | 0.00 | 3.4941e-04 | 7.334e+02 | 0.887 | 5 |
| 22 | 0.00 | 2.9495e-04 | 7.320e+02 | 0.871 | 5 |
| 23 | 0.00 | 2.6300e-04 | 7.307e+02 | 0.857 | 5 |
| 24 | 0.00 | 2.5200e-04 | 7.295e+02 | 0.844 | 4 |
| 25 | 0.00 | 2.4150e-04 | 7.283e+02 | 0.833 | 4 |
| 26 | 0.00 | 2.0549e-04 | 7.273e+02 | 0.823 | 4 |
| 27 | 0.00 | 1.6441e-04 | 7.266e+02 | 0.813 | 4 |
| 28 | 0.00 | 1.3256e-04 | 7.259e+02 | 0.805 | 4 |
| 29 | 0.00 | 1.1094e-04 | 7.254e+02 | 0.798 | 4 |
| 30 | 0.00 | 9.2849e-05 | 7.249e+02 | 0.791 | 4 |

mdl =
ldaModel with properties:

NumTopics: 4
WordConcentration: 1
TopicConcentration: 0.7908
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CorpusTopicProbabilities:

[
DocumentTopicProbabilities: [154x4 double]
[

TopicWordProbabilities:
Vocabulary:
TopicOrder:
FitInfo:

View information about the fit.

mdl.FitInfo

ans = struct with fields:

TerminationCode:
TerminationStatus:
NumIterations:
NegativelLoglLikelihood:
Perplexity:
Solver:
History:

1

3092x4 double]
[1x3092 string]
‘initial-fit-probability’
[1x1 struct]

0.2654 0.2531 0.2480 0.2336]

"Relative tolerance on log-likelihood satisfied."

30
6.
72
"C

[1x1 struct]

3042e+04
4.9445
vbo"

Resume fitting the LDA model with a lower log-likelihood tolerance.

tolerance

'LogLikelihoodTolerance',tolerance)

le-5;
updatedMdl = resume(mdl,bag,

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 30 | 0.00 | | 7.249e+02 | 0.791 | 0 |
| 31 | 0.01 | 8.0569e-05 | 7.246e+02 | 0.785 | 3
| 32 | 0.00 | 7.4692e-05 | 7.242e+02 | 0.779 | 3
| 33 | 0.00 | 6.9802e-05 | 7.239e+02 | 0.774 | 3
| 34 | 0.00 | 6.1154e-05 | 7.236e+02 | 0.770 | 3
| 35 | 0.00 | 5.3163e-05 | 7.233e+02 | 0.766 | 3
| 36 | 0.00 | 4.7807e-05 | 7.231le+02 | 0.762 | 3
| 37 | 0.00 | 4.1820e-05 | 7.229e+02 | 0.759 | 3
| 38 | 0.00 | 3.6237e-05 | 7.227e+02 | 0.756 | 3
| 39 | 0.00 | 3.1819e-05 | 7.226e+02 | 0.754 | 2 |
| 40 | 0.00 | 2.7772e-05 | 7.224e+02 | 0.751 | 2 |
| 41 | 0.00 | 2.5238e-05 | 7.223e+02 | 0.749 | 2 |
| 42 | 0.00 | 2.2052e-05 | 7.222e+02 | 0.747 | 2 |
| 43 | 0.00 | 1.8471e-05 | 7.221e+02 | 0.745 | 2 |
| 44 | 0.00 | 1.5638e-05 | 7.221e+02 | 0.744 | 2 |
| 45 | 0.00 | 1.3735e-05 | 7.220e+02 | 0.742 | 2 |
| 46 | 0.00 | 1.2298e-05 | 7.219e+02 | 0.741 | 2 |
| 47 | 0.00 | 1.0905e-05 | 7.219e+02 | 0.739 | 2 |
| 48 | 0.01 | 9.5581e-06 | 7.218e+02 | 0.738 | 2 |
updatedMdl =

ldaModel with properties:

NumTopics: 4
WordConcentration: 1
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TopicConcentration: 0.7383
CorpusTopicProbabilities: [0.2679 0.2517 0.2495 0.2309]
DocumentTopicProbabilities: [154x4 double]
TopicWordProbabilities: [3092x4 double]
Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

View information about the fit.
updatedMdl.FitInfo

ans = struct with fields:
TerminationCode: 1
TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 48
NegativelLoglLikelihood: 6.3001e+04
Perplexity: 721.8357
Solver: "cvb0"
History: [1x1 struct]

Input Arguments

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object. To resume fitting a model, you must fit LldaMd1
with solver 'savb', 'avb', or 'cvb0'.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows’, then the value counts (i, j) corresponds to the number of times the

Jjth word of the vocabulary appears in the ith document. Otherwise, the value counts (i, j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Note The arguments bag and counts must be the same used to fit LldaMd1.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'LogLikelihoodTolerance',0.001 specifies a log-likelihood tolerance of 0.001.
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Solver Options

DocumentsIn — Orientation of documents
‘rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

FitTopicConcentration — Option for fitting topic concentration parameter
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
"FitTopicConcentration' and either true or false.

The default value is the value used to fit TdaMd1.
Example: 'FitTopicConcentration', true
Data Types: logical

FitTopicProbabilities — Option for fitting topic probabilities
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

The default value is the value used to fit TdaMd1.

The function fits the Dirichlet prior a = ag(p1 P2 - Pk) on the topic mixtures, where g is the topic
concentration and py, ..., px are the corpus topic probabilities which sum to 1.

Example: 'FitTopicProbabilities', true

Data Types: logical

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
"LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001
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Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'"IterationLimit' and a positive integer.

This option supports models fitted with batch solvers only (' cgs', 'avb', and 'cvb0').
Example: 'IterationLimit', 200

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair consisting of
'DataPassLimit’' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and 'MiniBatchLimit’,
then resume uses the argument that results in processing the fewest observations.

This option supports models fitted with stochastic solvers only ('savb').

Example: 'DataPassLimit’',?2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting of
'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit’, then resume ignores the default
value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and 'DataPassLimit’', then
resume uses the argument that results in processing the fewest observations. The default value is
ceil(numDocuments/MiniBatchSize), where numDocuments is the number of input documents.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchLimit', 200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit"' and a
positive integer. The function processes MiniBatchSize documents in each iteration.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchSize',512
Display Options

ValidationData — Validation data
[ 1 (default) | bagOfWords object | bagOfNgrams object | sparse matrix of word counts
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Validation data to monitor optimization convergence, specified as the comma-separated pair
consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object, or a sparse
matrix of word counts. If the validation data is a matrix, then the data must have the same orientation
and the same number of words as the input documents.

ValidationFrequency — Frequency of model validation
positive integer

Frequency of model validation in number of iterations, specified as the comma-separated pair
consisting of 'ValidationFrequency' and a positive integer.

The default value depends on the solver used to fit the model. For the stochastic solver, the default
value is 10. For the other solvers, the default value is 1.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

* 0 - Do not display verbose output.
* 1 - Display progress information.

Example: 'Verbose',0

Output Arguments

updatedMdl — Updated LDA model
ldaModel object (default)

Updated LDA model, returned as an LdaModel object.

See Also
bagO0fNgrams | bag0fWords | fitlda | ldaModel | logp | predict | transform | wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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rougeEvaluationScore

Evaluate translation or summarization with ROUGE similarity score

Syntax

rougeEvaluationScore(candidate, references)
rougeEvaluationScore(candidate, references,Name,Value)

score
score

Description

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) scoring algorithm evaluates the
similarity between a candidate document and a collection of reference documents. Use the ROUGE
score to evaluate the quality of document translation and summarization models.

score = rougeEvaluationScore(candidate, references) returns the ROUGE score between
the specified candidate document and the reference documents. The function, by default, computes
unigram overlaps between candidate and references. This is also known as the ROUGE-N metric
with n-gram length 1. For more information, see “ROUGE Score” on page 1-328.

score = rougeEvaluationScore(candidate, references,Name,Value) specifies additional
options using one or more name-value pairs.

Examples

Evaluate Similarity

Specify the candidate document as a tokenizedDocument object.

str = "the fast brown fox jumped over the lazy dog";
candidate = tokenizedDocument(str)

candidate =
tokenizedDocument:

9 tokens: the fast brown fox jumped over the lazy dog

Specify the reference documents as a tokenizedDocument array.

str = [
"the quick brown animal jumped over the lazy dog"
“the quick brown fox jumped over the lazy dog"];
references = tokenizedDocument(str)

references =
2x1 tokenizedDocument:

9 tokens: the quick brown animal jumped over the lazy dog
9 tokens: the quick brown fox jumped over the lazy dog
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Calculate the ROUGE score between the candidate document and the reference documents.

score rougeEvaluationScore(candidate, references)

score = 0.8889

Specify N-Gram Lengths

Specify the candidate document as a tokenizedDocument object.

str = "a simple summary document containing some words";
candidate = tokenizedDocument(str)

candidate =
tokenizedDocument:

7 tokens: a simple summary document containing some words

Specify the reference documents as a tokenizedDocument array.

str = [

"a simple document"

"another document with some words"];
references = tokenizedDocument(str)

references =
2x1 tokenizedDocument:

3 tokens: a simple document
5 tokens: another document with some words

Calculate the ROUGE score between the candidate document and the reference documents using the
default options.

score = rougeEvaluationScore(candidate, references)

score =1

The rougeEvaluationScore function, by default, compares unigram (single-token) overlaps
between the candidate document and the reference documents. Because the ROUGE score is a recall-
based measure, if one of the reference documents is made up entirely of unigrams that appear in the
candidate document, the resulting ROUGE score is one. In this scenario, the output of the
rougeEvaluationScore function is uninformative.

For a more meaningful result, calcualte the ROUGE score again using bigrams by setting the
"NgramLength' option to 2. The resulting score is less than one, since every reference document
contain bigrams that do not appear in the candidate document.

score = rougeEvaluationScore(candidate, references, 'NgramLength',2)

score = 0.5000
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Input Arguments

candidate — Candidate document
tokenizedDocument scalar | string array | cell array of character vectors

Candidate document, specified as a tokenizedDocument scalar, a string array, or a cell array of
character vectors. If candidate is not a tokenizedDocument scalar, then it must be a row vector
representing a single document, where each element is a word.

references — Reference documents
tokenizedDocument array | string array | cell array of character vectors

Reference documents, specified as a tokenizedDocument array, a string array, or a cell array of
character vectors. If references is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To evaluate against multiple
reference documents, use a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: scores =
rougeEvaluationScore(candidate, references, 'ROUGEMethod', 'weighted-
subsequences ') specifies to use the weighted subsequences ROUGE method.

ROUGEMethod — ROUGE method
'n-grams' (default) | ' longest-common-subsequences' | 'weighted-subsequences' |
'skip-bigrams' | 'skip-bigrams-and-unigrams'

ROUGE method, specified as the comma-separated pair consisting of 'ROUGEMethod' and one of the
following:

* 'n-grams' - Evaluate the ROUGE score using n-gram overlaps between the candidate document
and the reference documents. This is also known as the ROUGE-N metric.

* 'longest-common-subsequences' - Evaluate the ROUGE score using Longest Common
Subsequence (LCS) statistics. This is also known as the ROUGE-L metric.

* 'weighted-subsequences' - Evaluate the ROUGE score using weighted longest common
subsequence statistics. This method favors consecutive LCSs. This is also known as the ROUGE-W
metric.

* 'skip-bigrams' - Evaluate the ROUGE score using skip-bigram (any pair of words in sentence
order) co-occurrence statistics. This is also known as the ROUGE-S metric.

* 'skip-bigrams-and-unigrams' - Evaluate the ROUGE score using skip-bigram and unigram
co-occurrence statistics. This is also known as the ROUGE-SU metric.

NgramLength — N-gram length
1 (default) | positive integer

N-gram length used for the 'n-grams' ROUGE method (ROUGE-N), specified as the comma-
separated pair consisting of 'NgramLength' and a positive integer.

If the 'ROUGEMethod"' option is not 'n-grams', then the 'NgramLength' option has no effect.
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Tip If the longest document in references has fewer than NgramLength words, then the resulting
ROUGE score is NaN. If candidate has fewer than NgramLength words, then the resulting ROUGE
score is zero. To ensure that rougeEvaluationScore returns nonzero scores for very short
documents, set NgramLength to a positive integer smaller than the length of candidate and the
length of the longest document in references.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SkipDistance — Skip distance
4 (default) | positive integer

Skip distance used for the 'skip-bigrams' and 'skip-bigrams-and-unigrams' ROUGE
methods (ROUGE-S and ROUGE-SU), specified as the comma-separated pair consisting of
'SkipDistance' and a positive integer.

If the 'ROUGEMethod' option is not 'skip-bigrams' or 'skip-bigrams-and-unigrams', then
the 'SkipDistance' option has no effect.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Output Arguments

score — ROUGE score
scalar

ROUGE score, returned as a scalar value in the range [0,1] or NaN.

A ROUGE score close to zero indicates poor similarity between candidate and references. A
ROUGE score close to one indicates strong similarity between candidate and references. If
candidate is identical to one of the reference documents, then score is 1. If candidate and
references are both empty documents, then the resulting ROUGE score is NaN.

Tip If the longest document in references has fewer than NgramLength words, then the resulting
ROUGE score is NaN. If candidate has fewer than NgramLength words, then the resulting ROUGE
score is zero. To ensure that rougeEvaluationScore returns nonzero scores for very short
documents, set NgramLength to a positive integer smaller than the length of candidate and the
length of the longest document in references.

Algorithms
ROUGE Score

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) scoring algorithm [1] calculates the
similarity between a candidate document and a collection of reference documents. Use the ROUGE
score to evaluate the quality of document translation and summarization models.

N-gram Co-Occurrence Statistics (ROUGE-N)

Given an n-gram length n, the ROUGE-N metric between a candidate document and a single
reference document is given by
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2 > Count(n-gram, candidate)

rj € reference n-gram € rj

ROUGE-Ng; didate, refi =
Slng1e(can idate, reference) 2 numNgrams(r;)
rj € reference

where the elements r; are sentences in the reference document, Count(n-gram, candidate) is the
number of times the specified n-gram occurs in the candidate document and numNgrams(r;) is the
number of n-grams in the specified reference sentence r.

For sets of multiple reference documents, the ROUGE-N metric is given by
ROUGE-N(candidate, references) = maxk{ROUGE—Nsingle(candidate, referencesk)} .

To use the ROUGE-N metric, set the 'ROUGEMethod' option to 'n-grams"'.
Longest Common Subsequence (ROUGE-L)

Given a sentence d = [wy, ..., W] and a sentence s, where the elements s; correspond to words, the
subsequence [wj, ..., w; ] is a common subsequence of d and s if Wi € {sy,...,sptforj=1,...,k and

i1 < - < iy, where the elements of s are the words of the sentence and k is the length of the
subsequence. The subsequence [wj,, ..., w; ] is a longest common subsequence (LCS) if the

subsequence length k is maximal.

Given a candidate document and a single reference document the union of the longest common
subsequences is given by

LCS(candidate, reference) = {w|w € LCS(candidate, 1;)},

rji € reLf)erence

where LCS(candidate, ;) is the set of longest common subsequences in the candidate document and
the sentence r; from a reference document.

The ROUGE-L metric is an F-score measure. To calculate it, first calculate the recall and precision
scores given by

2 |LCS(candidate,r;)|
i €
Rjcs(candidate, reference) = fiE reerence

numWords(reference)

; |LCS(candidate,r;)|
ri € reference

Pics(candidate, reference) = TumWords(candidate)

Then, the ROUGE-L metric between a candidate document and a single reference document is given
by the F-score measure

ROUGE-Lgjpgle(candidate, reference)

_+ Bz)Rlcs(candidate, reference)Pj.s(candidate, reference)

’

Rjcs(candidate, reference) + BZPlcs(candidate, reference)

where the parameter f controls the relative importance of the precision and recall. Because the
ROUGE score favors recall, j is typically set to a high value.
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For sets of multiple reference documents, the ROUGE-L metric is given by

ROUGE-L(candidate, references) = maxk{ROUGE-LSmgle(candidate, referencesk)} .
To use the ROUGE-L metric, set the 'ROUGEMethod' option to 'longest-common-
subsequences'.

Weighted Longest Common Subsequence (ROUGE-W)

Given a weighting function f such that f has the property f(x+y)>f(x)+f(y) for any positive integers x
and y, define WLCS(candidate, reference) to be the length of the longest consecutive matches
encountered in the candidate document and a single reference document scored by the weighting
function f. For more information about calculating this value, see [1].

The ROUGE-W is metric given an F-score measure which requires the recall and precision scores
given by

Ryjes(candidate, reference) = f—l(WLCS(candldate, reference))

f(numWords(reference)

Pyics(candidate, reference) = f~ 1(W]f&iﬁwgiggfsgrfgfggfgge))

The ROUGE-W metric between a candidate document and a single reference document is given by
the F-score measure

ROUGE-Wgipgie(candidate, reference)

1+ BZ)Rwlcs(candidate, reference)P,,cs(candidate, reference)

’

Ryics(candidate, reference) + BZPwlcs(candidate, reference)

where the parameter  controls the relative importance of the precision and recall. Because the
ROUGE score favors recall, 8 is typically set to a high value.

For multiple reference documents, the ROUGE-W metric is given by
ROUGE-W(candidate, references) = maxk{ROUGE—Wsmg]e(candidate, referencesk)} .

To use the ROUGE-W metric, set the 'ROUGEMethod' option to 'weighted-longest-common-
subsequences'.

Skip-Bigram Co-Occurrence Statistics (ROUGE-S)

A skip-bigram is an ordered pair of words in a sentence allowing for arbitrary gaps between them.
That is, given a sentence ¢; = [¢j1, ..., Cim] from a candidate document, where the elements ¢;

correspond to the words in the sentence, the pair of words [c;j;, ¢ij,] is a skip-bigram ifj; < jj.

The ROUGE-S metric is an F-score measure. To calculate it, first calculate the recall and precision
scores given by

; Count(skip-bigram, candidate)
rj € reference skip-bigram € rj

numSkipBigrams(r;)

Rgkipz(candidate, reference) =

i € rgérence
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; Count(skip-bigram, candidate)
rj € reference skip-bigram € rj

numSkipBigrams(c;)
¢i € candidate

Pgipz(candidate, reference) =

where the elements r; and c; are sentences in the reference document and candidate document,
respectively, Count(skip-bigram, candidate) is the number of times the specified skip-bigram occurs
in the candidate document, and numSkipBigrams(s) is the number of skip-bigrams in the sentence s.
Then, the ROUGE-S metric between a candidate document and a single reference document is given
by the F-score measure

ROUGE-Sgjpgle(candidate, reference)

1+ Bz)Rskipz(candidate, reference)Pgyipo(candidate, reference)

’

Rskip2(candidate, reference) + ﬁZPSkipz(candidate, reference)
For sets of multiple reference documents, the ROUGE-S metric is given by
ROUGE-S(candidate, references) = maxk{ROUGE-SSmgle(candidate, referencesk)} .

To use the ROUGE-S metric, set the 'ROUGEMethod' option to 'skip-bigrams'.
Skip-Bigram and Unigram Co-Occurrence Statistics (ROUGE-SU)

To also include unigram co-occurrence statistics in the ROUGE-S metric, introduce unigram counts
into the recall and precision scores for ROUGE-S. This is equivalent to including start tokens in the
candidate and reference documents, since

(Count(skip-bigram, candidate)) + 2 (Count(unigram, candidate)

skip-bigram € rj unigram € rj

= S (Count(skip-bigram, candidate+)),

skip-bigram € rl-+

where Count(unigram,candidate) is the number of times the specified unigram appears in the

candidate document, and ri" and candidate™ denote the reference sentence and the candidate
document augmented with start tokens, respectively.

For sets of multiple reference documents, the ROUGE-SU metric is given by

ROUGE-SU(candidate, references) = maxk{ROUGE-SSmgle(candidateJ’, references{)},

where reference” is the reference document with sentences augmented with start tokens.

To use the ROUGE-SU metric, set the 'ROUGEMethod' option to 'skip-bigrams-and-unigrams'.

References

[1] Lin, Chin-Yew. "Rouge: A package for automatic evaluation of summaries." In Text Summarization
Branches Out, pp. 74-81. 2004.
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See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
lexrankScores | mmrScores | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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splitGraphemes

Split string into graphemes

Syntax

newStr = splitGraphemes(str)

Description

newStr = splitGraphemes(str) splits the string str into graphemes. A grapheme (also known
as grapheme cluster) is the Unicode term for human-perceived characters.

Examples

Split Text into Graphemes
Split text into graphemes using the splitGraphemes function.

A grapheme (also known as grapheme clusters) is the Unicode term for human-perceived characters.
Some graphemes contain multiple code units. For example, the "smiling face with sunglasses" emoji

(Oowith code point U+1F60E) is a single grapheme but comprises two UTF16 code units "D83D" and
"DEOE".

Split the text "Smile! [J[7into graphemes.
str = "Smile! " + compose("\xD83D\xDEQE")

str =
"Smile! [N

newStr = splitGraphemes(str)

newStr = 8x1 string

R Nl R

0o

Here, the function does not split the emoji into multiple characters.

Input Arguments

str — Input text
string array | character vector | cell array of character vectors
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Input text, specified as a string array, character vector, or cell array of character vectors. For string
array and cell array input, each element of str must have the same number of graphemes.

If the number of graphemes is not the same for every element of str, then call the function in a for-
loop to split the elements of str one at a time.

Data Types: string | char | cell

Output Arguments

newStr — Split graphemes
string array | cell array of character vectors

Split graphemes, returned as a string array or a cell array of character vectors. If str is a string
array, then newStr is also a string array. Otherwise, newStr is a cell array of character vectors.

The size of newStr depends on the input:

» If stris a string scalar or a character vector, then newStr is an numGraphemes-by-1 string array
or cell array, where numGraphemes is the number of graphemes.

* If strisan M-by-1 string array or cell array, then newStr is a M-by-numGraphemes array.

* If strisa 1-by-N string array or cell array, then newStr is a 1-by-N-by-numGraphemes array.

For a string array or cell array of any size, the function orients the split graphemes along the first
trailing dimension with size 1.

See Also
editDistance | editDistanceSearcher | knnsearch | rangesearch | split |
tokenizedDocument

Topics

“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

“Analyze Text Data Using Topic Models”

Introduced in R2019a
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splitSentences

Split text into sentences

Syntax

newStr = splitSentences(str)

Description

newStr = splitSentences(str) splits str into an array of sentences.

Examples

Split Text into Sentences

Read the text from the example file sonnets. txt and split it into sentences.

filename = "sonnets.txt";
str = extractFileText(filename);
sentences = splitSentences(str);

View the first few sentences.
sentences(1:10)

ans = 10x1 string
"THE SONNETS"
"by William Shakespeare"
IIIII
"From fairest creatures we desire increase,..."
IIIIII
"When forty winters shall besiege thy brow,..."
"How much more praise deserv'd thy beauty's use "
"This were to be new made when thou art old,
IIIIIII
"Look in thy glass and tell the face thou viewest..."

Input Arguments

str — Input text
string scalar | character vector | scalar cell array containing a character vector

Input text, specified as a string scalar, a character vector, or a scalar cell array containing a character
vector.

Data Types: string | char | cell
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Output Arguments

newStr — Output text
string array | character vector

cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

Algorithms

If emoticons or emoji characters appear after a terminating punctuation character, then the function
splits the sentence after the emoticons and emaoji.

See Also
addSentenceDetails | corpusLanguage | decodeHTMLEntities | erasePunctuation |
eraseTags | eraseURLs | lower | tokenizedDocument | upper

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018a
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stopWords

List of stop words

Syntax
words = stopWords
words = stopWords('Language', language)

Description

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data. Use stop word lists
to help create custom lists of words to remove before analysis.

To remove the default list of stop words from tokenized documents using the language details of the
documents, use removeStopWords. To remove a custom list of words from tokenized documents, use
removeWords.

The function returns English, Japanese, German, and Korean stop word lists.

words = stopWords returns a string array of common English words which can be removed from
documents before analysis.

words = stopWords('Language', language) specifies the stop word language.

Examples

Remove Custom List of Stop Words from Documents

To remove the default list of stop words using the language details of documents, use
removeStopWords.

To remove a custom list of stop words, use the removeWords function. You can use the stop word list
returned by the stopWords function as a starting point.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
View the first few documents.

documents(1:5)

ans =
5x1 tokenizedDocument:
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70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair ti
71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair

Create a list of stop words starting with the output of the stopWords function.
customStopWords = [stopWords "thy" "thee" "thou" "dost" "doth"];
Remove the custom stop words from the documents and view the first few documents.

documents = removeWords(documents,customStopWords);
documents(1:5)

ans =
5x1 tokenizedDocument:

62 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
61 tokens: forty winters shall besiege brow dig deep trenches beautys field youths proud liv
52 tokens: look glass tell face viewest time face form another whose fresh repair renewest b
52 tokens: unthrifty loveliness why spend upon self beautys legacy natures bequest gives not
59 tokens: hours gentle work frame lovely gaze every eye dwell play tyrants same unfair fair

List of English Stop Words

Get a list of English stop words using the stopWords function. For readability, reshape the output.

words = stopWords;
reshape(words, [25 9])

ans = 25x9 string

Columns 1 through 6

"a" "but" "during" "hows" "it's" "said"
"about" "by" "each" "however" "it's" "says"
"above" "can" "either" it "its" "see"
"across" "can't" "for" "itd" "let's" "she"
"after" "can't" "from" "itd" "let’s" "she'd"
"all" "cant" "given" R "lets" "she’'d"
"along" "cannot" "had" R N "may" "shed"
"also" "could" "has" "i'm" "me" "she'll1"
"am" "couldn't" "have" "i'm" "more" "she’11"
"an" "couldn't" "having" "im" "most" "shell"
"and" "couldnt" "he" "i've" "much" "should"
"any" "did" "he'd" "i've" "must" "since"
"are" "didn't" "he'd" "ive" "my" "so"
"aren't" "didn't" "hed" "if" "no" "some"
"aren’'t" "didnt" "he'll" "in" "not" "such"
"arent" "do" "he’11" "instead" "now" "than"
"as" "does" "her" "into" "of" "that"
"at" "doesn't" "here" "is" "on" "the"
"be" "doesn’t" "hers" "isn't" "one" "their"
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"because"
"been"
"before"
"being"
"between"
"both"

"doesnt"
"doing"
"done"
"don't"
"don’'t"
"dont"

Columns 7 through 9

"this"
"those"
"through"
o™
"too"
"towards"
"under"
"until"
"us"
"use"
"used"
"uses"
"using"
"very"
"want"
"was"
"wasn't"
"wasn't"
"wasnt"
we'"
"we'd"
"we'd"
"we'll"
"we'll"
"we're"

List of Japanese Stop Words

"we're"
"we've"
"we've"
"weve"
"were"
"what"
"what's"
"what's"
"whats"
"when"
"when's
"when's
"whens"
"where"
"whether"
"which"
"while"
"who"
"who'l1"
"who'11"
"wholl"
"who's"
"who's"
"whos"
"who've"

"him" "isn't" "only"
"himself" "isnt" "or"
"his" it
"how" ittt
"how's" it
"how's" "itl”

IIOurII
IIOutII
"over

"who’ve"
"whove"
"will"
"with"
"within"
"without"
"won't"
"won't"
"would"
"wouldn't"
"wouldn’t"
"you"
"you'd"
"you'd"
"youd"
"you'll"
"you'll"
"youll"
“you're"
"you're"
"youre"
"you've"
"you've"
"youve"
“your"

"other"

"them"
"then"
"there"
"therefore"
"these"
"they"

Get a list of Japanese stop words using the stopWords function. For readability, reshape the output.

words = stopWords('Language','ja');
reshape([words strings(1,8)1,[35 11])

ans = 35x11 string
Columns 1 through 7

"HET "
“Ht=Y"
"Hbn"
"Hob"
II&& n
II&@:II
"B
n &hll
IRt

"E L
n éAJII
"L
"Lk
Il—d—b\ll
"—dzj"
II—d—nll
Il—d—&—cll
A

AN TR g e
ARl vt R
" ER TR g
"IEA R S
"EL" BT sk
UESE "BOUEN R
TN e vgr g
Y TR
"BED" A rE O

1 §|J n
II$II
n :t n
n _I%. n
n %II
IIﬁII
n Fﬁ_ll
n EII
II%%II
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ey
lll’\ill
"l’\“b"
HAV IR R
n 5 -5 n
"BHEEHM"
"BEAR"
lljshll
llﬁ“l’\ll
llb\( n
"B
AReloN
llb\r9 n
llb“ro n
tEf

n < _u_ll
"Zob"
n : t n

" :t n
"Zh"

"%5"
II%:II
"Tbi"
"Fob"
II%—GII
II%*LII

"EhEN"

"y

" EA

=B
0
="
"o
"B’b"
"HoA"
"—CAJII
tEBsY"
II&%II
IIE:II
nETHM
e B

Columns 8 through 11

n *mn
||% "

||||
||£||

"=t

/\
ll_tll
e
llj.Lll
II+II
IIEII
II;II
e
ll1,%=\ll
IIJEII
"R
"k
"BR”
ll,_A,@ n
ll-ﬂ"ﬁ@ n

“i%é n

II$§II
IIEEh\II
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"2 g
Ly
IIﬁ( n
ik
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EL
II§ < n
L
it
"Z Ok
sy
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IIﬁQII
||u—ﬁﬁll
oy
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II*;ﬁll
Ill;J\J:"
T
II%DII
IIEE n
"B
"R
LA
"FE
IIE] Lill
II;EE‘CII

II5II
Ilill
IIBII
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|I75“II
n :%I
o
IIéII
n éil
o
"L
IIj—él
"f"
II_E_%I

"/S‘( "
II/SiLJ !
Il&oll
II/\AIII
II&A}II
"ES"
EA
IIQEéII
Ilil/ll
"EEL"
Iliill
PR
e
"HIEE A"
“HATR
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II%)o)II
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Il,boll
IIJ:all
IIJ:%II
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"oz
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List of German Stop Words

Get a list of German stop words using the stopWords function. For readability, reshape the output.

words = stopWords('Language', 'de');
reshape([words strings(1,7)],[25 8])

ans = 25x8 string

Columns 1 through 6

Ilabll
"aber"
"alle"
"allem"
"allen"
"aller"
"alles"
"als"
"also"
"am"

"an"
"andere"
"anderem"
"anderen"
"anderer"
"anderes"
"auch"
"auf"
"aus"
"bei"
"bin"
"bis"
"bist"
Ildall
"damit"

"dann"
"das"
"dass"
"daR"
"dein"
"deine"
"deinem"
"deiner"
"deines"
"dem"
"den"
"denn"
"der"
"derer"
"des"
"dessen"
"dich"
"die"
"dies"
"diese"
"diesem"
"diesen"
"dieser"
"dieses"
"dir"

Columns 7 through 8

"seine"
"seinem"
"seinen"
"seiner"
"seines"
"sich"
"sie"
"sind"
ngo"
"um®
"und"
"uns"
"unter"
"vom"
"von"
"vor"
"war"
"waren"

"welcher"
"welches"
"wenn"
"wer"
"werde"
"werden"
"weshalb"
"wie"
"wieder"
"wieso"
"wir"
"wirst"
"Wo"
"wahrend"
-
"zum"
"zur"
"lUber"

"doch"
Ildull
"durch"
"ein"
"eine"
"einem"
"einen"
"einer"
"eines"
TP
nag™
"euch"
"euer"
"eure"
"eurem"
"euren"
"eures"
"far"
"ganz"
"gar"
"habe"
"haben"
"hat"
"hatte"
"hattest"

"hattet"
"her"
"hin"
"hatte"
"hattest"
"hattet"
"ich"
"ihm"
"ihn"
"ihr"
"ihre"
"ihrem"
"ihren"
"ihrer"
"ihres"

im
"in
"ins"
"ist"
Iljall
"jede"
"jedem"
"jeden"
"jeder"
"jedes"

"jene"
"jenem"
"jenen"
"jener"
"jenes"
"kann"
"kannst"
"kein"
"keine"
"keinem"
"keinen"
"keiner"
"keines"
"konnen"
"konnte"
"konnten"
"konntest"
"lieB"
"man"
"manche"
"manchem"
"manchen"
"mancher"
"manches"
"mehr"

"mein"
"meine"
"meinem"
"meinen"
"meiner"
"meines"
"mich"
"mir"
"mit"
"muss”
"musst”
"musste"
"muR"
"missen"
"missten"
"nach"
"nicht"
"nichts"
"noch"
"nun"
"nur"
Ilobll
"oder"
"seid"
"sein"
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"warst"
"warum"
"was"
"weil"
"welche"
"welchem"
"welchen"

Input Arguments

language — Stop word language
‘en' (default) | 'ja' | 'de' | 'ko'

Stop word language, specified as one of the following:

* 'en' - English
* 'ja' -]Japanese
*+ 'de' - German

e 'ko' -Korean

For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.

More About

Language Considerations

The stopWords and removeStopWords functions support English, Japanese, German, and Korean
stop words only.

To remove stop words from other languages, use removeWords and specify your own stop words to
remove.

See Also
bagO0fNgrams | bag0fWords | normalizeWords | removeLongWords | removeShortWords |
removeStopWords | removeWords | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2017b
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string

Convert scalar document to string vector

Syntax

words = string(document)

Description

words = string(document) converts a scalar tokenizedDocument to a string array of words.

Examples

Convert Document to String

Convert a scalar tokenized document to a string array of words.

document = tokenizedDocument("an example of a short sentence")
document =
tokenizedDocument:

6 tokens: an example of a short sentence

words = string(document)

words = 1x6 string
Ilanll

"example" "of" a "short" "sentence"

Input Arguments

document — Input document
scalar tokenizedDocument

Input document, specified as a scalar tokenizedDocument object.

Output Arguments

words — Output words
string vector

Output words, returned as a string vector.

See Also
context | doc2cell | doclength | joinWords | tokenizedDocument
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Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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textscatter

2-D scatter plot of text

Syntax

ts = textscatter(x,y,str)

ts = textscatter(xy,str)

ts = textscatter(ax, )

ts = textscatter( _ ,Name,Value)
Description

ts = textscatter(x,y,str) creates a text scatter plot with elements of str at the locations
specified by the vectors x and y, and returns the resulting TextScatter object.

ts = textscatter(xy,str) uses locations specified by the rows of xy. This syntax is equivalent
to textscatter(xy(:,1),xy(:,2),str).

ts = textscatter(ax, ) plots into axes ax. You can use any input arguments from previous
syntaxes.
ts = textscatter( ,Name, Value) specifies additional TextScatter properties using one or

more name-value pair arguments.

Examples

Create Text Scatter Plot

Plot a string array of numbers at random points on a text scatter plot.

X = rand(50,1);

y = rand(50,1);

str = string(1:50);
figure
textscatter(x,y,str);
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1.2

Alternatively, you can pass the coordinates x and y as a matrix xy, where x and y are the columns of

XYy.
Xy = [x yl;
figure

textscatter(xy,str)
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Specify Word Colors
Create text scatter plot of a word embedding and specify word colors.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of length 300.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans = 1Ix2

500 300
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Embed the word vectors in two-dimensional space using tsne.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. Specify the word colors to

be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure

textscatter(XY,words, 'ColorData',colorData)

title("Word Embedding t-SNE Plot")

Word Embedding t-SNE Plot
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Input Arguments

X — x values
vector

x values, specified as a vector.
Example: [1 2 3]

y — y values
vector

y values, specified as a vector.
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Example: [1 2 3]

Xy — x and y values
matrix

x and y values, specified as a matrix with two columns. xy(i,1) and xy(i,2) correspond to the x
and y values of the ith element of str, respectively. xy must have the numel(str) rows.

textscatter(xy,str) is equivalent to textscatter(xy(:,1),xy(:,2),str).
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. X, y, and str must be of
equal length.

Example: ["one" "two" "three"]

Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Marker', '*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see TextScatter
Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text, set
TextDensityPercentage to 100. To show no text, set TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.

Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the text labels
to this length and adds ellipses at the point of truncation.

Example: 10

MarkerColor — Marker colors
‘auto’' (default) | 'none' | RGB triplet
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Marker colors, specified as one of these values:

* ‘'auto' — For each marker, use the same color as the corresponding text labels.
* 'none' — Do not show markers.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[1 (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

* RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-element row
vector whose elements specify the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

* Three-column matrix of RGB triplets — Use a different color for each text label in the plot. Each
row of the matrix defines one color. The number of rows must equal the number of text labels.

» Categorical vector — Use a different color for each category in the vector. Specify ColorData as
a vector the same length as XData. Specify the colors for each category using the Colors
property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments

ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart after it has
been created. For more information, see TextScatter Properties.

See Also
fastTextWordEmbedding | textscatter3 | tokenizedDocument | word2vec | wordEmbedding
| wordcloud

Topics

“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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Introduced in R2017b

1-351



1 Functions
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3-D scatter plot of text

Syntax

ts = textscatter3(x,y,z,str)

ts = textscatter3(xyz,str)

ts = textscatter3(ax, )

ts = textscatter3(  ,Name,Value)
Description

ts = textscatter3(x,y,z,str) creates a 3-D text scatter plot with elements of str at the
locations specified by the vectors X, y, and z.

ts = textscatter3(xyz,str) creates a 3-D text scatter plot with elements of str at the
locations specified by the rows of xyz. This syntax is equivalent to
textscatter(xyz(:,1),xyz(:,2),xyz(:,3),str).

ts = textscatter3(ax, ) plots into axes object ax. Use this syntax with any of the input
arguments in previous syntaxes.

ts = textscatter3( ,Name, Value) specifies additional TextScatter properties using one
or more name-value pair arguments.

Examples

Create 3-D Text Scatter Plot

Plot a string array of numbers at random points on a 3-D text scatter plot.

X rand(50,1);
y rand(50,1);
z rand(50,1);

str = string(1:50);
figure
textscatter3(x,y,z,str);
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Alternatively, you can pass the coordinates X, y, and z as a matrix xyz, where X, y, and z are the
columns of xyz.

Xyz =[xy z];

figure
textscatter3(xyz,str)
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Specify Word Colors
Create text scatter plot of a word embedding and specify word colors.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Convert the first 250 words to vectors using word2vec. V is a matrix of word vectors of length 300.
words = emb.Vocabulary(1:250);

V = word2vec(emb,words);

size(V)

ans = 1x2

250 300

Embed the word vectors in a 3-D space using tsne.

XYZ = tsne(V, 'NumDimensions',3);
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Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot. Specify the word colors
to be random.

numWords = numel(words);

colorData = rand(numWords,3);

figure

textscatter3(XYZ,words, 'ColorData',colorData)
title("Word Embedding t-SNE Plot")

Word Embedding t-SNE Plot

30

20 4

Input Arguments

X — x values
vector

x values, specified as a vector. X, y, z, and str must be of equal length.

Example: [1 2 3]

y — y values
vector

y values, specified as a vector. X, y, z, and str must be of equal length.
Example: [1 2 3]

Zz — z values
vector
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z values, specified as a vector. X, y, z, and str must be of equal length.
Example: [1 2 3]

Xyz — x, y, and z values
matrix

x, y, and z values, specified as a matrix. The first, second, and third columns of xyz correspond to the
X, y, and z values, respectively.

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. X, y, z, and str must be of
equal length.

Example: ["one" "two" "three"]

Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Marker', '*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see TextScatter
Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text, set
TextDensityPercentage to 100. To show no text, set TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.

Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the text labels
to this length and adds ellipses at the point of truncation.

Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:
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* 'auto' — For each marker, use the same color as the corresponding text labels.
* 'none' — Do not show markers.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[1 (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

* RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-element row
vector whose elements specify the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

* Three-column matrix of RGB triplets — Use a different color for each text label in the plot. Each
row of the matrix defines one color. The number of rows must equal the number of text labels.

» Categorical vector — Use a different color for each category in the vector. Specify ColorData as
a vector the same length as XData. Specify the colors for each category using the Colors
property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments

ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart after it has
been created. For more information, see TextScatter Properties.

See Also
fastTextWordEmbedding | textscatter | tokenizedDocument | word2vec | wordEmbedding |
wordcloud

Topics

“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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TextScatter Properties

Control text scatter chart appearance and behavior

Description

TextScatter properties control the appearance and behavior of TextScatter object. By changing
property values, you can modify certain aspects of the text scatter chart.

Properties
Text

TextData — Text labels
string array | cell array of character vectors

Text labels, specified as a string array, or a cell array of character vectors.
Example: ["wordl" "word2" "word3"]

Data Types: string | cell

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text, set
TextDensityPercentage to 100. To show no text, set TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.

Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the text labels
to this length and adds ellipses at the point of truncation.

Example: 10
Font Style

FontName — Font name
system supported font name | ' FixedWidth'

Font name, specified as the name of the font to use or 'FixedWidth'. To display and print properly,
the font name must be a font that your system supports. The default font depends on the specific
operating system and locale.

To use a fixed-width font that looks good in any locale, use ' FixedWidth'. The 'FixedWidth' value
relies on the root FixedWidthFontName property. Setting the root FixedWidthFontName property
causes an immediate update of the display to use the new font.

Example: 'Cambria’
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FontSize — Font size
10 (default) | scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. One point equals 1/72 inch. To
change the font units, use the FontUnits property.

Example: 12

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

FontAngle — Character slant
'normal’' (default) | 'italic'

Character slant, specified as 'normal’ or 'italic'. Not all fonts have both font styles. Therefore,
the italic font might look the same as the normal font.

FontWeight — Thickness of text characters
‘normal’ (default) | 'bold"

Thickness of the text characters, specified as one of these values:

* 'normal' — Default weight as defined by the particular font
* 'bold' — Thicker character outlines than normal
MATLAB uses the FontWeight property to select a font from those available on your system. Not all

fonts have a bold font weight. Therefore, specifying a bold font weight still can result in the normal
font weight.

FontSmoothing — Smooth font character appearance
‘on' (default) | 'off'

Smooth font character appearance, specified as one of these values:
* 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text characters to

make the text easier to read.
+ 'off' — Do not apply font smoothing.

Text Box

EdgeColor — Color of box outline
'none' (default) | RGB triplet | character vector of color name

Color of box outline, specified as 'none’, a three-element RGB triplet, or a character vector of a
color name. The default edge color of 'none' makes the box outline invisible.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800"', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.
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Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

‘green' ‘g’ [0 1 0] '#00FF00'

'blue’ ‘b [0 0 1] '#000OFF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" E—

'white' 'w' [111] "#FFFFFF' ]

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’
Example: [0 0 1]

BackgroundColor — Color of text box background
‘none’ (default) | 'data’ | RGB triplet

Color of text box background, specified as one of these values:

* 'none'— Make the text box background transparent.

* ‘'data'— Use background color specified by ColorData. The software automatically chooses a
foreground to complement the background color.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

Margin — Space around text within text box
3 (default) | positive scalar

The space around the text within the text box, specified as a positive scalar in point units.

MATLAB uses the Extent property value plus the Margin property value to determine the size of the
text box.
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Example: 8
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64
Markers

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

* ‘'auto' — For each marker, use the same color as the corresponding text labels.
* 'none' — Do not show markers.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

MarkerSize — Marker size
6 (default) | positive scalar

Marker size, specified as a positive scalar.

Example: 10

Data

XData — x values
[ 1 (default) | scalar | vector

x values, specified as a scalar or a vector. The text scatter plot displays an individual marker for each
value in XData.

The input argument X to the textscatter and textscatter3 functions set the x values. XData
and YData must have equal lengths.

Example: [1 2 4 2 6]

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
categorical | datetime | duration

XDataSource — Variable linked to XData
"' (default) | character vector containing MATLAB workspace variable name

Variable linked to XData, specified as a character vector containing a MATLAB workspace variable
name. MATLAB evaluates the variable in the base workspace to generate the XData.

By default, there is no linked variable so the value is an empty character vector, ' '. If you link a
variable, then MATLAB does not update the XData values immediately. To force an update of the data
values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a different
dimension, you might cause the function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.
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Example: 'x

YData — y values
[ 1 (default) | scalar | vector

y values, specified as a scalar or a vector. The text scatter plot displays an individual marker for each
value in YData.

The input argument Y to the textscatter and textscatter3 functions set the y values. XData
and YData must have equal lengths.

Example: [1 3 3 4 6]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
categorical | datetime | duration

YDataSource — Variable linked to YData
"' (default) | character vector containing MATLAB workspace variable name

Variable linked to YData, specified as a character vector containing a MATLAB workspace variable
name. MATLAB evaluates the variable in the base workspace to generate the YData.

By default, there is no linked variable so the value is an empty character vector, ' '. If you link a
variable, then MATLAB does not update the YData values immediately. To force an update of the data
values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a different
dimension, you might cause the function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Example: 'y

ZData — z values
[]1 (default) | scalar | vector

z values, specified as a scalar or a vector.

» For 2-D scatter plots, ZData is empty by default.

» For 3-D scatter plots, the input argument Z to the scatter3 function sets the z values. XData,
YData, and ZData must have equal lengths.

Example: [1 2 2 1 0]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
categorical | datetime | duration

ZDataSource — Variable linked to ZData
"' (default) | character vector containing MATLAB workspace variable name

Variable linked to ZData, specified as a character vector containing a MATLAB workspace variable
name. MATLAB evaluates the variable in the base workspace to generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ' '. If you link a
variable, then MATLAB does not update the ZData values immediately. To force an update of the data
values, use the refreshdata function.
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Note If you change one data source property to a variable that contains data of a different
dimension, you might cause the function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Example: 'z

ColorData — Text colors
[1 (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

* RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-element row
vector whose elements specify the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

* Three-column matrix of RGB triplets — Use a different color for each text label in the plot. Each
row of the matrix defines one color. The number of rows must equal the number of text labels.

» Categorical vector — Use a different color for each category in the vector. Specify ColorData as
a vector the same length as XData. Specify the colors for each category using the Colors
property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Visibility

Visible — State of visibility
‘on' (default) | 'off"

State of visibility, specified as one of these values:

* 'on' — Display the object.

+ 'off' — Hide the object without deleting it. You still can access the properties of an invisible
object.

Identifiers

Type — Type of graphics object
"textscatter'

This property is read-only.

Type of graphics object, returned as 'textscatter'. Use this property to find all objects of a given
type within a plotting hierarchy; for example, searching for the type using findobj.
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Tag — User-specified tag
"' (default) | character vector

This property is read-only.

User-specified tag to associate with the object, specified as a character vector. Tags provide a way to
identify graphics objects. Use this property to find all objects with a specific tag within a plotting
hierarchy; for example, searching for the tag using findobj.

Example: 'January Data'

UserData — Data to associate with object
[1 (default) | any MATLAB data

This property is read-only.

Data to associate with the object, specified as any MATLAB data; for example, a scalar, vector, matrix,
cell array, character array, table, or structure. MATLAB does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the getappdata and
setappdata functions.

Example: 1:100

DisplayName — Text used for legend label
"' (default) | character vector

This property is read-only.

Text used for the legend label, specified as a character vector. If you do not specify the text, then the
legend uses a label of the form 'dataN'. The legend does not display until you call the legend
command.

Example: 'Label Text'

Annotation — Control for including or excluding object from legend
Annotation object

Control for including or excluding the object from a legend, returned as an Annotation object. Set
the underlying IconDisplayStyle property to one of these values:

* 'on' — Include the object in the legend (default).
+ 'off' — Do not include the object in the legend.

For example, exclude a stem chart from the legend.

p = plot(1:10, 'DisplayName', 'Line Chart');

hold on

s = stem(1:10, 'DisplayName', 'Stem Chart');

hold off

s.Annotation.LegendInformation.IconDisplayStyle = 'off"';

legend('show")

Alternatively, you can control the items in a legend using the legend function. Specify the first input
argument as a vector of the graphics objects to include.

p = plot(1:10, 'DisplayName’, 'Line Chart');
hold on
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s = stem(1:10, 'DisplayName', 'Stem Chart');
hold off
legend(p)

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array | DataTip object array

Children, returned as an empty GraphicsPlaceholder array or a DataTip object array. Use this
property to view a list of data tips that are plotted on the chart.

You cannot add or remove children using the Children property. To add a child to this list, set the
Parent property of the DataTip object to the chart object.

HandleVisibility — Visibility of object handle
‘on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of these
values:

* 'on' — Object handle is always visible.

+ 'off' — Object handle is invisible at all times. This option is useful for preventing unintended
changes to the UI by another function. Set the HandleVisibility to 'off' to temporarily hide
the handle during the execution of that function.

* 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command-line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles regardless of their HandleVisibility property setting.

Interactive Control

ButtonDownFcn — Mouse-click callback
"' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

* Function handle
* Cell array containing a function handle and additional arguments

e Character vector that is a valid MATLAB command or function, which is evaluated in the base
workspace (not recommended)
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Use this property to execute code when you click the object. If you specify this property using a
function handle, then MATLAB passes two arguments to the callback function when executing the
callback:

* Clicked object — You can access properties of the clicked object from within the callback function.
* Event data — This argument is empty for this property. Replace it with the tilde character (~) in
the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see “Callback
Definition”.

Note If the PickableParts property is set to 'none' or if the HitTest property is setto 'off"’,
then this callback does not execute.

Example: @myCallback
Example: {@myCallback,arg3}

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context menu when
you right-click the object. Create the context menu using the uicontextmenu function.

Note If the PickableParts property is set to 'none' orif the HitTest property is set to 'off"’,
then the context menu does not appear.

Selected — Selection state
‘off' (default) | 'on'

Selection state, specified as one of these values:

* 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its Selected
property to 'on'. If the SelectionHighlight property also is set to 'on', then MATLAB
displays selection handles around the object.

o 'off' — Not selected.

SelectionHighlight — Display of selection handles when selected
‘on' (default) | 'off"

Display of selection handles when selected, specified as one of these values:

* 'on' — Display selection handles when the Selected property is set to 'on"'.
+ 'off' — Never display selection handles, even when the Selected property is set to 'on".

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content that appears
in a data tip by modifying the properties of the underlying DataTipTemplate object. For a list of
properties, see DataTipTemplate.
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For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is not copied by
copyobj.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

'visible' — Can capture mouse clicks when visible. The Visible property must be set to 'on'
and you must click a part of the TextScatter object that has a defined color. You cannot click a
part that has an associated color property set to 'none"'. If the plot contains markers, then the
entire marker is clickable if either the edge or the fill has a defined color. The HitTest property
determines if the TextScatter object responds to the click or if an ancestor does.

'none' — Cannot capture mouse clicks. Clicking the TextScatter object passes the click to the
object below it in the current view of the figure window. The HitTest property of the
TextScatter object has no effect.

HitTest — Response to captured mouse clicks

'o

n' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

'on' — Trigger the ButtonDownFcn callback of the TextScatter object. If you have defined the
UIContextMenu property, then invoke the context menu.

'"off' — Trigger the callbacks for the nearest ancestor of the TextScatter object that has a
HitTest property set to 'on' and a PickableParts property value that enables the ancestor to
capture mouse clicks.

Note The PickableParts property determines if the TextScatter object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

Interruptible — Callback interruption

‘o

n' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property determines if a
running callback can be interrupted.

Note There are two callback states to consider:

The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The
Interruptible property of the object owning the running callback determines if interruption is
allowed. If interruption is not allowed, then the BusyAction property of the object owning the
interrupting callback determines if it is discarded or put in the queue.
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If the ButtonDownFcn callback of the TextScatter object is the running callback, then the
Interruptible property determines if it another callback can interrupt it:

* 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes the queue,
such as when there is a drawnow, figure, getframe, waitfor, or pause command.

+ If the running callback contains one of these commands, then MATLAB stops the execution of
the callback at this point and executes the interrupting callback. MATLAB resumes executing
the running callback when the interrupting callback completes. For more information, see
“Interrupt Callback Execution”.

+ If the running callback does not contain one of these commands, then MATLAB finishes
executing the callback without interruption.

* 'off' — Not interruptible. MATLAB finishes executing the running callback without any
interruptions.

BusyAction — Callback queuing
"queue’ (default) | 'cancel!’

Callback queuing specified as 'queue' or 'cancel’'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks.

Note There are two callback states to consider:

* The running callback is the currently executing callback.
* The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The
Interruptible property of the object owning the running callback determines if interruption is
allowed. If interruption is not allowed, then the BusyAction property of the object owning the
interrupting callback determines if it is discarded or put in the queue.

If the ButtonDownFcn callback of the TextScatter object tries to interrupt a running callback that
cannot be interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

* 'queue' — Put the interrupting callback in a queue to be processed after the running callback
finishes execution. This is the default behavior.

* ‘'cancel' — Discard the interrupting callback.

Creation and Deletion Control

CreateFcn — Creation callback
"' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

* Function handle
* Cell array containing a function handle and additional arguments

* Character vector that is a valid MATLAB command or function, which is evaluated in the base
workspace (not recommended)
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Use this property to execute code when you create the object. Setting the CreateFcn property on an
existing object has no effect. You must define a default value for this property, or define this property
using a Name, Value pair during object creation. MATLAB executes the callback after creating the
object and setting all of its properties.

If you specify this callback using a function handle, then MATLAB passes two arguments to the
callback function when executing the callback:

* Created object — You can access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the root, which can be
queried using the gcbo function.

* Event data — This argument is empty for this property. Replace it with the tilde character (~) in
the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see “Callback
Definition”.

Example: @myCallback
Example: {@myCallback,arg3}

DeleteFcn — Deletion callback
"' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

* Function handle
* Cell array containing a function handle and additional arguments

e Character vector that is a valid MATLAB command or function, which is evaluated in the base
workspace (not recommended)

Use this property to execute code when you delete the object MATLAB executes the callback before
destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments to the
callback function when executing the callback:

* Deleted object — You can access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the root, which can be
queried using the gcbo function.

» Event data — This argument is empty for this property. Replace it with the tilde character (~) in
the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see “Callback

Definition”.

Example: @myCallback

Example: {@myCallback,arg3}

BeingDeleted — Deletion status
"off' (default) | 'on'

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property to 'on'
when the delete function of the object begins execution (see the DeleteFcn property). The
BeingDeleted property remains set to 'on' until the object no longer exists.
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Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Compatibility Considerations

UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or Ul component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also

bagOfNgrams | bag0OfWords | textscatter | textscatter3 | tokenizedDocument |
wordCloudCounts | wordcloud

Topics
“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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Term Frequency-Inverse Document Frequency (tf-idf) matrix

Syntax

M
M
M

tfidf(bag)
tfidf(bag,documents)
tfidf( _ ,Name,Value)

Description

M = tfidf(bag) returns a Term Frequency-Inverse Document Frequency (tf-idf) matrix based on
the bag-of-words or bag-of-n-grams model bag.

M = tfidf(bag,documents) returns a tf-idf matrix for the documents in documents by using the
inverse document frequency (IDF) factor computed from bag.

M = tfidf(  ,Name,Value) specifies additional options using one or more name-value pair
arguments.

Examples

Create Tf-idf Matrix
Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.



tfidf

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10x10

3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 3.8918

0 0 0 0 0 4.5287 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0
0 0 2.7344 0 0 0 0 0

Create tf-idf Matrix from New Documents

2.4720

[cNoNoNoNoNoNoNoNO]

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words model and

an array of new documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model from the documents.

bag bagOfWords (documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix for an array of new documents using the inverse document frequency (IDF)
factor computed from bag.

newDocuments = tokenizedDocument ([

"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

tfidf(bag, newDocuments)

=
1l

(1,7) 3.2452
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(1,36) 1.2303
(2,197) 3.4275
(2,313) 3.6507
(2,387) 0.6061
(1,1205) 4.7958
(1,1835) 3.6507
(2,1917) 5.0370

Specify TF Weight Formulas

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.

bagO0fWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10x10
3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 3.8918 2.4720
0 0 0 0 0 4.5287 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 2.7344 0 0 0 0 0 0

You can change the contributions made by the TF and IDF factors to the tf-idf matrix by specifying
the TF and IDF weight formulas.
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To ignore how many times a word appears in a document, use the binary option of ' TFWeight'.
Create a tf-idf matrix and set ' TFWeight' to 'binary'. View the first 10 rows and columns.

M = tfidf(bag, 'TFWeight', 'binary');
full(M(1:10,1:10))

ans = 10x10

3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 1.9459 2.4720

0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0 0
0 0 2.7344 0 0 0 0 0 0

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Normalized', true specifies to normalize the frequency counts.

TFWeight — Method to set term frequency factor
"raw' (default) | 'binary' | 'log'

Method to set term frequency (TF) factor, specified as the comma-separated pair consisting of
'TFWeight' and one of the following:
* ‘'raw' - Set the TF factor to the unchanged term counts.

* ‘'binary' - Set the TF factor to the matrix of ones and zeros where the ones indicate whether a
term is in a document.

* 'log' - Set the TF factorto 1 + log(bag.Counts).
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Example: 'TFWeight', 'binary’
Data Types: char
IDFWeight — Method to compute inverse document frequency factor

‘normal’ (default) | 'textrank' | 'classic-bm25' | "unary' | 'smooth' | "max"' |
"probabilistic’

Method to compute inverse document frequency factor, specified as the comma-separated pair
consisting of ' IDFWeight' and one of the following:

* 'textrank' - Use TextRank IDF weighting [1]. For each term, set the IDF factor to

* 1og((N-NT+0.5)/(NT+0.5)) if the term occurs in more than half of the documents, where N
is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

* IDFCorrection*avgIDF if the term occurs in half of the documents or f, where avgIDF is the
average IDF of all tokens.

* ‘'classic-bm25"' - For each term, set the IDF factor to Log( (N-NT+0.5)/(NT+0.5)).

* ‘'normal' - For each term, set the IDF factor to Log (N/NT).

* ‘'unary' - For each term, set the IDF factor to 1.

* ‘'smooth' - For each term, set the IDF factor to Log (1+NT/NT).

* 'max' - For each term, set the IDF factor to Log(1+max (NT)/NT).

* 'probabilistic' - For each term, set the IDF factor to Log( (N-NT)/NT).

where N is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

Example: 'IDFWeight', 'smooth'

Data Types: char

IDFCorrection — Inverse document frequency correction factor
0.25 (default) | nonnegative scalar

Inverse document frequency correction factor, specified as the comma-separated pair consisting of
"IDFCorrection' and a nonnegative scalar.

This option only applies when 'IDFWeight' is 'textrank'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Normalized — Option to normalize term counts
false (default) | true

Option to normalize term counts, specified as the comma-separated pair consisting of 'Normalized'
and true or false. If true, then the function normalizes each vector of term counts in the
Euclidean norm.

Example: 'Normalized', true

Data Types: logical

DocumentsIn — Orientation of output documents
"rows' (default) | ' columns'



tfidf

Orientation of output documents in the frequency count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Return a matrix of frequency counts with rows corresponding to documents.
* ‘'columns' - Return a transposed matrix of frequency counts with columns corresponding to
documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.

Data Types: logical

Output Arguments

M — Output Term Frequency-Inverse Document Frequency matrix
sparse matrix | cell array of sparse matrices

Output Term Frequency-Inverse Document Frequency matrix, specified as a sparse matrix or a cell
array of sparse matrices.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of sparse matrices. Each element in the cell array is the tf-idf matrix calculated from the
corresponding element of bag.

References

[1] Barrios, Federico, Federico Lopez, Luis Argerich, and Rosa Wachenchauzer. "Variations of the
Similarity Function of TextRank for Automated Summarization." arXiv preprint
arXiv:1602.03606 (2016).

See Also
bagO0fNgrams | bag0fWords | encode | tokenizedDocument | topkngrams | topkwords

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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tokenizedDocument

Array of tokenized documents for text analysis

Description

A tokenized document is a document represented as a collection of words (also known as tokens)
which is used for text analysis.

Use tokenized documents to:

» Detect complex tokens in text, such as web addresses, emoticons, emoji, and hashtags.
* Remove words such as stop words using the removeWords or removeStopWords functions.

* Perform word-level preprocessing tasks such as stemming or lemmatization using the
normalizeWords function.

* Analyze word and n-gram frequencies using bag0fWords and bagOfNgrams objects.

* Add sentence and part-of-speech details using the addSentenceDetails and
addPart0fSpeechDetails functions.

* Add entity tags using the addEntityDetails function.
* View details about the tokens using the tokenDetails function.

The function supports English, Japanese, German, and Korean text. To learn how to use
tokenizedDocument for other languages, see “Language Considerations” on page 1-389.

Creation

Syntax

documents = tokenizedDocument

documents = tokenizedDocument(str)

documents = tokenizedDocument(str,Name,Value)

Description

documents = tokenizedDocument creates a scalar tokenized document with no tokens.

documents = tokenizedDocument(str) tokenizes the elements of a string array and returns a
tokenized document array.

documents = tokenizedDocument(str,Name,Value) specifies additional options using one or
more name-value pair arguments.

Input Arguments

str — Input text
string array | character vector | cell array of character vectors | cell array of string arrays
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Input text, specified as a string array, character vector, cell array of character vectors, or cell array of
string arrays.

If the input text has not already been split into words, then str must be a string array, character
vector, cell array of character vectors, or a cell array of string scalars.

Example: ["an example of a short document";"a second short document"]
Example: 'an example of a single document'

Example: {'an example of a short document';'a second short document'}

If the input text has already been split into words, then specify ' TokenizeMethod' to be 'none’'. If
str contains a single document, then it must be a string vector of words, a row cell array of
character vectors, or a cell array containing a single string vector of words. If st r contains multiple
documents, then it must be a cell array of string arrays.

Example: ["an" "example" "document"]

Example: {'an', 'example', 'document'}

Example: {["an" "example" "of" "a" "short" "document"]}

Example: {["an" "example" "of" "short" "document"];[ "second" "short"

"document"]}

a a

Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'DetectPatterns',{'email-address', 'web-address'} detects email addresses and
web addresses

TokenizeMethod — Method to tokenize documents
"unicode' | 'mecab' | mecabOptions object | 'none'’

Method to tokenize documents, specified as the comma-separated pair consisting of
'TokenizeMethod' and one of the following:

* 'unicode' - Tokenize input text using rules based on Unicode® Standard Annex #29 [1] and the
ICU tokenizer [2]. If str is a cell array, then the elements of str must be string scalars or
character vectors. If 'Language' is 'en' or'de"', then 'unicode’ is the default.

* 'mecab' - Tokenize Japanese and Korean text using the MeCab tokenizer [3]. If ' Language' is
'ja' or 'ko', then 'mecab’ is the default.

* mecabOptions object - Tokenize Japanese and Korean text using the MeCab options specified by
a mecabOptions object.

* 'none' - Do not tokenize the input text.
If the input text has already been split into words, then specify ' TokenizeMethod' to be 'none’. If
str contains a single document, then it must be a string vector of words, a row cell array of

character vectors, or a cell array containing a single string vector of words. If str contains multiple
documents, then it must be a cell array of string arrays.

1-379



1 Functions

1-380

DetectPatterns — Patterns of complex tokens to detect
"all’' (default) | character vector | string array | cell array of character vectors

Patterns of complex tokens to detect, specified as the comma-separated pair consisting of
'DetectPatterns' and 'none’, 'all’, or a string or cell array containing one or more of the
following.

* ‘'email-address' - Detect email addresses. For example, treat "user@domain.com" as a
single token.

* 'web-address' - Detect web addresses. For example, treat "https://www.mathworks.com"
as a single token.

* ‘'hashtag' - Detect hashtags. For example, treat "#MATLAB" as a single token.
* ‘'at-mention' - Detect at-mentions. For example, treat "@MathWorks" as a single token.
 ‘'emoticon' - Detect emoticons. For example, treat ": -D" as a single token.

If DetectPatternsis 'none’, then the function does not detect any complex token patterns. If
DetectPatternsis 'all', then the function detects all the listed complex token patterns.

Example: 'DetectPatterns', 'hashtag'
Example: 'DetectPatterns',{'email-address', 'web-address'}

Data Types: char | string | cell

CustomTokens — Custom tokens to detect
"' (default) | string array | character vector | cell array of character vectors | table

Custom tokens to detect, specified as the comma-separated pair consisting of ' CustomTokens' and
one of the following.

* A string array, character vector, or cell array of character vectors containing the custom tokens.

* A table containing the custom tokens in a column named Token and the corresponding token
types a column named Type.

If you specify the custom tokens as a string array, character vector, or cell array of character vectors,
then the function assigns token type "custom". To specify a custom token type, use table input. To
view the token types, use the tokenDetails function.

Example: 'CustomTokens', ["C++" "C#"]

Data Types: char | string | table | cell

RegularExpressions — Regular expressions to detect
"' (default) | string array | character vector | cell array of character vectors | table

Regular expressions to detect, specified as the comma-separated pair consisting of
'RegularExpressions' and one of the following.

* A string array, character vector, or cell array of character vectors containing regular expressions.

* A table containing regular expressions a column named Pattern and the corresponding token
types in a column named Type.

If you specify the regular expressions as a string array, character vector, or cell array of character
vectors, then the function assigns token type "custom". To specify a custom token type, use table
input. To view the token types, use the tokenDetails function.
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Example: 'ReqgularExpressions', ["ver:\d+" "rev:\d+"]

Data Types: char | string | table | cell

TopLevelDomains — Top-level domains to use for web address detection
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as the comma-separated pair consisting
of 'TopLevelDomains' and a character vector, string array, or cell array of character vectors. By
default, the function uses the output of topLevelDomains.

This option only applies if 'DetectPatterns' is 'all’' or contains 'web-address'.

Example: 'TopLevelDomains',["com" "net" "org"]

Data Types: char | string | cell

Language — Language

Ienllljal|ldel|lkol

Language, specified as the comma-separated pair consisting of 'Language’ and one of the following.
* 'en' - English. This option also sets the default value for ' TokenizeMethod' to 'unicode’.

* 'ja' - Japanese. This option also sets the default value for ' TokenizeMethod' to 'mecab’.

* 'de' - German. This option also sets the default value for 'TokenizeMethod' to 'unicode’.
* 'ko' - Korean. This option also sets the default value for ' TokenizeMethod' to 'mecab’.

If you do not specify a value, then the function detects the language from the input text using the
corpusLanguage function.

This option specifies the language details of the tokens. To view the language details of the tokens,
use tokenDetails. These language details determine the behavior of the removeStopWords,
addPart0fSpeechDetails, normalizeWords, addSentenceDetails, and addEntityDetails
functions on the tokens.

For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.

Example: 'Language', 'ja'

Properties

Vocabulary — Unique words in the documents
string array

Unique words in the documents, specified as a string array. The words do not appear in any particular
order.

Data Types: string
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Object Functions

Preprocessing

erasePunctuation Erase punctuation from text and documents

removeStopWords Remove stop words from documents

removeWords Remove selected words from documents or bag-of-words model
normalizeWords Stem or lemmatize words

correctSpelling Correct spelling of words

replaceWords Replace words in documents

replaceNgrams Replace n-grams in documents

removeEmptyDocuments Remove empty documents from tokenized document array, bag-of-words
model, or bag-of-n-grams model

lower Convert documents to lowercase

upper Convert documents to uppercase

Tokens Details

tokenDetails Details of tokens in tokenized document array
addSentenceDetails Add sentence numbers to documents
addPartOfSpeechDetails Add part-of-speech tags to documents
addLanguageDetails Add language identifiers to documents
addTypeDetails Add token type details to documents
addLemmaDetails Add lemma forms of tokens to documents
addEntityDetails Add entity tags to documents

Export

writeTextDocument Write documents to text file

Manipulation and Conversion

doclength Length of documents in document array

context Search documents for word or n-gram occurrences in context
joinWords Convert documents to string by joining words

doc2cell Convert documents to cell array of string vectors

string Convert scalar document to string vector
plus Append documents

replace Replace substrings in documents

docfun Apply function to words in documents

regexprep Replace text in words of documents using regular expression

Display

wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA
model

Examples

Tokenize Text

Create tokenized documents from a string array.
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str = [
"an example of a short sentence"
"a second short sentence"]

str = 2x1 string
"an example of a short sentence"
"a second short sentence"

documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence
4 tokens: a second short sentence

Detect Complex Tokens

Create a tokenized document from the string str. By default, the function treats the hashtag
"#MATLAB", the emoticon ": -D", and the web address "https://www.mathworks.com/help" as
single tokens.

str = "Learn how to analyze text in #MATLAB! :-D see https://www.mathworks.com/help/";
document = tokenizedDocument(str)

document =
tokenizedDocument:
11 tokens: Learn how to analyze text in #MATLAB ! :-D see https://www.mathworks.com/help/

To detect only hashtags as complex tokens, specify the 'DetectPatterns' option to be 'hashtag’
only. The function then tokenizes the emoticon ":-D" and the web address "https://
www.mathworks.com/help" into multiple tokens.

document = tokenizedDocument(str, ‘DetectPatterns', "hashtag"')

document =
tokenizedDocument:
24 tokens: Learn how to analyze text in #MATLAB ! : - D see https : / / www . mathworks . com

Remove Stop Words from Documents

Remove the stop words from an array of documents using removeStopWords. The
tokenizedDocument function detects that the documents are in English, so removeStopWords
removes English stop words.

documents = tokenizedDocument ([
"an example of a short sentence"
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"a second short sentence"]);
newDocuments = removeStopWords(documents)

newDocuments =
2x1 tokenizedDocument:

3 tokens: example short sentence
3 tokens: second short sentence

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
"a strongly worded collection of words"
"another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: a strongli word collect of word
4 tokens: anoth collect of word

Specify Custom Tokens

The tokenizedDocument function, by default, splits words and tokens that contain symbols. For
example, the function splits "C++" and "C#" into multiple tokens.

str = "I am experienced in MATLAB, C++, and C#.";
documents = tokenizedDocument(str)

documents =
tokenizedDocument:

14 tokens: I am experienced in MATLAB , C + + , and C # .

To prevent the function from splitting tokens that contain symbols, specify custom tokens using the
"CustomTokens' option.

documents = tokenizedDocument(str, 'CustomTokens', ["C++" "C#"1])

documents =
tokenizedDocument:

11 tokens: I am experienced in MATLAB , C++ , and C# .

The custom tokens have token type "custom". View the token details. The column Type contains the
token types.
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tdetails = tokenDetails(documents)

tdetails=11x5 table

Token DocumentNumber LineNumber Type Language
"It 1 1 letters en
"am" 1 1 letters en
"experienced" 1 1 letters en
"in" 1 1 letters en
"MATLAB" 1 1 letters en
" 1 1 punctuation en
"CH+" 1 1 custom en
" 1 1 punctuation en
"and" 1 1 letters en
"C#" 1 1 custom en
o 1 1 punctuation en

To specify your own token types, input the custom tokens as a table with the tokens in a column
named Token, and the types in a column named Type. To assign a custom type to a token that
doesn't include symbols, include in the table too. For example, create a table that will assign
"MATLAB", "C++", and "C#" to the "programming-language" token type.

T = table;
T.Token = ["MATLAB" "C++" "C#"]';
T.Type = ["programming-language" "programming-language" "programming-language"]'

T=3x2 table
Token Type
"MATLAB" "programming-language"
"CH+" "programming-language"
"CH" "programming-language"

Tokenize the text using the table of custom tokens and view the token details.

documents = tokenizedDocument(str, 'CustomTokens',T);
tdetails = tokenDetails(documents)

tdetails=11x5 table

Token DocumentNumber LineNumber Type Language
"I 1 1 letters en
“am" 1 1 letters en
"experienced"” 1 1 letters en
"in" 1 1 letters en
"MATLAB" 1 1 programming-language en
" 1 1 punctuation en
"C++" 1 1 programming-language en
" 1 1 punctuation en
"and" 1 1 letters en
"CH#" 1 1 programming-language en
o 1 1 punctuation en
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Specify Custom Tokens Using Regular Expressions

The tokenizedDocument function, by default, splits words and tokens containing symbols. For
example, the function splits the text "ver:2" into multiple tokens.

str = "Upgraded to ver:2 rev:3.";
documents = tokenizedDocument(str)

documents =
tokenizedDocument:

9 tokens: Upgraded to ver : 2 rev : 3 .

To prevent the function from splitting tokens that have particular patterns, specify those patterns
using the 'RegularExpressions' option.

Specify regular expressions to detect tokens denoting version and revision numbers: strings of digits
appearing after "ver:" and "rev:" respectively.

documents = tokenizedDocument(str, 'RegularExpressions',["ver:\d+" "rev:\d+"])

documents =
tokenizedDocument:

5 tokens: Upgraded to ver:2 rev:3 .

Custom tokens, by default, have token type "custom". View the token details. The column Type
contains the token types.

tdetails = tokenDetails(documents)

tdetails=5x5 table

Token DocumentNumber LineNumber Type Language
"Upgraded" 1 1 letters en
“to" 1 1 letters en
"ver:2" 1 1 custom en
"rev:3" 1 1 custom en
o 1 1 punctuation en

To specify your own token types, input the regular expressions as a table with the regular expressions
in a column named Pattern and the token types in a column named Type.

T = table;
T.Pattern = ["ver:\d+" "rev:\d+"]"';
T.Type = ["version" "revision"]'

T=2x2 table
Pattern Type
"ver:\d+" "version"
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"rev:\d+" "revision"

Tokenize the text using the table of custom tokens and view the token details.

documents = tokenizedDocument(str, 'RegularExpressions',T);
tdetails = tokenDetails(documents)

tdetails=5x5 table

Token DocumentNumber LineNumber Type Language
"Upgraded" 1 1 letters en
"to" 1 1 letters en
"ver:2" 1 1 version en
"rev:3" 1 1 revision en
o 1 1 punctuation en

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Search for the word "life".

tbl = context(documents,"life");

head(tbl)
ans=8x3 table
Context Document Word
"consumst thy self single life ah thou issueless shalt " 9 10
"ainted counterfeit lines life life repair times pencil" 16 35
"d counterfeit lines life life repair times pencil pupi" 16 36
" heaven knows tomb hides life shows half parts write b" 17 14
"he eyes long lives gives life thee " 18 69
"tender embassy love thee life made four two alone sink" 45 23
"ves beauty though lovers life beauty shall black lines" 63 50
"s shorn away live second life second head ere beautys " 68 27

View the occurrences in a string array.
tbl.Context

ans = 23x1 string
"consumst thy self single life ah thou issueless shalt "
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"ainted counterfeit lines life life repair times pencil"
"d counterfeit lines life life repair times pencil pupi”
" heaven knows tomb hides life shows half parts write b"
"he eyes long lives gives life thee !
"tender embassy love thee life made four two alone sink"
"ves beauty though lovers life beauty shall black lines"
"s shorn away live second life second head ere beautys "
"e rehearse let love even life decay lest wise world lo"
"st bail shall carry away life hath line interest memor"
"art thou hast lost dregs life prey worms body dead cow"
! thoughts food life sweetseasond showers gro"
"tten name hence immortal life shall though once gone w"
" beauty mute others give life bring tomb lives life fa"
"ve life bring tomb lives life fair eyes poets praise d"
" steal thyself away term life thou art assured mine 1i"
"fe thou art assured mine life longer thy love stay dep"
" fear worst wrongs least life hath end better state be"
"anst vex inconstant mind life thy revolt doth lie o ha"
" fame faster time wastes life thou preventst scythe cr"
"ess harmful deeds better life provide public means pub"
"ate hate away threw savd life saying "
" many nymphs vowd chaste life keep came tripping maide"

Tokenize Japanese Text

Tokenize Japanese text using tokenizedDocument. The function automatically detects Japanese

text.

str = [
"ERICA. BLD, "
"EONATELD, "

"EIZEMNESE, BLHITWD, "
"EOENESEFHELTWNS, "];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

6 tokens: Z (2 W& . HFLL o
6 tokens: Z O K& T HFLL
10 tokens: ZE [ 2 M = . B T W5,
10 tokens: & M 2 M ®EE F #L T W5,

Tokenize German Text

Tokenize German text using tokenizedDocument. The function automatically detects German text.

str = [
"Guten Morgen. Wie geht es dir?"
"Heute wird ein guter Tag."];
documents = tokenizedDocument(str)
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documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?
6 tokens: Heute wird ein guter Tag .

More About

Language Considerations

The tokenizedDocument function has built-in rules for English, Japanese, German, and Korean only.
For English and German text, the 'unicode’ tokenization method of tokenizedDocument detects
tokens using rules based on Unicode Standard Annex #29 [1] and the ICU tokenizer [2], modified to
better detect complex tokens such as hashtags and URLs. For Japanese and Korean text, the 'mecab’
tokenization method detects tokens using rules based on the MeCab tokenizer [3].

For other languages, you can still try using tokenizedDocument. If tokenizedDocument does not
produce useful results, then try tokenizing the text manually. To create a tokenizedDocument array
from manually tokenized text, set the ' TokenizeMethod' option to 'none’.

For more information, see “Language Considerations”.

Compatibility Considerations

tokenizedDocument detects Korean language
Behavior changed in R2019b

Starting in R2019b, tokenizedDocument detects the Korean language and sets the 'Language’
option to 'ko'. This changes the default behavior of the addSentenceDetails,
addPart0fSpeechDetails, removeStopWords, and normalizeWords functions for Korean
document input. This change allows the software to use Korean-specific rules and word lists for
analysis. If tokenizedDocument incorrectly detects text as Korean, then you can specify the
language manually by setting the 'Language' name-value pair of tokenizedDocument.

In previous versions, tokenizedDocument usually detects Korean text as English and sets the
'Language’ option to 'en'. To reproduce this behavior, manually set the 'Language ' name-value
pair of tokenizedDocument to 'en’.

tokenizedDocument detects emoticons
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument, by default, detects emoticon tokens. This behavior makes
it easier to analyze text containing emoticons.

In R2017b and R2018a, tokenizedDocument splits emoticon tokens into multiple tokens. To
reproduce this behavior, in tokenizedDocument, specify the 'DetectPatterns' option to be
{'email-address', 'web-address', 'hashtag', 'at-mention'}.

tokenDetails returns token type emoji for emoji characters

Behavior changed in R2018b
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Starting in R2018b, tokenizedDocument detects emoji characters and the tokenDetails function
reports these tokens with type "emoji". This makes it easier to analyze text containing emoji
characters.

In R2018a, tokenDetails reports emoji characters with type "other". To find the indices of the
tokens with type "emoji" or "other", use the indices idx = tdetails.Type == "emoji" |
tdetails.Type == "other", where tdetails is a table of token details.

tokenizedDocument does not split at slash and colon characters between digits
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument does not split at slash, backslash, or colon characters
when they appear between two digits. This behavior produces better results when tokenizing text
containing dates and times.

In previous versions, tokenizedDocument splits at these characters. To reproduce the behavior,
tokenize the text manually or insert whitespace characters around slash, backslash, and colon
characters before using tokenizedDocument.

References

[1] Unicode Text Segmentation. https://www.unicode.org/reports/tr29/

[2] Boundary Analysis. http://userguide.icu-project.org/boundaryanalysis

[3] MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://taku910.github.io/mecab/

See Also

addEntityDetails | addPart0fSpeechDetails | addSentenceDetails | bagOfNgrams |
bagOfWords | context | joinWords | normalizeWords | removeEmptyDocuments |
removeStopWords | removeWords | replaceNgrams | replaceWords | tokenDetails

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2017b
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textanalytics.ja.mecabToLemma

textanalytics.ja.mecabToLemma

Extract lemmata from MeCab output for Japanese

Syntax

lemmata = textanalytics.ja.mecabToLemma(words,info)

Description

lemmata = textanalytics.ja.mecabToLemma(words,info) extracts lemmata (normalized
words) given MeCab output in the format returned by the MeCab-ipadic dictionary.

Input Arguments

words — Input tokens
string vector

Input tokens, specified as a string vector.

Data Types: string

info — Information struct
struct

Information struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* PartOfSpeech - Numerical code used inside the MeCab-ipadic dictionary for the part-of-speech
classification.

Data Types: struct

Output Arguments

lemmata — Extracted lemmata
string vector

Extracted lemmata, returned as a string vector the same size as words.

See Also
addLemmaDetails | mecabOptions | normalizeWords | textanalytics.ja.mecabToNER |
textanalytics.ja.mecabToPOS | tokenizedDocument

Topics

“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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textanalytics.ja.mecabToNER

Extract named entity information from MeCab output for Japanese

Syntax

entities = textanalytics.ja.mecabToNER(words,info)

Description

entities = textanalytics.ja.mecabToNER(words,info) extracts named entity information
given MeCab output in the format returned by the MeCab-ipadic dictionary.

Input Arguments

words — Input tokens
string vector

Input tokens, specified as a string vector.

Data Types: string

info — Information struct
struct

Information struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* Part0fSpeech - Numerical code used inside the MeCab-ipadic dictionary for the part-of-speech
classification.

Data Types: struct

Output Arguments

entities — Extracted entity information
categorical vector

Extracted entity information, returned as a categorical vector the same size as words.

See Also
addEntityDetails | mecabOptions | textanalytics.ja.mecabToLemma |
textanalytics.ja.mecabToPOS | tokenizedDocument

Topics

“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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textanalytics.ja.mecabToPOS

Extract part-of-speech information from MeCab output for Japanese

Syntax

posTags = textanalytics.ja.mecabToP0S(words,info)

Description

posTags = textanalytics.ja.mecabToP0S(words,info) extracts part-of-speech information
given MeCab output in the format returned by the MeCab-ipadic dictionary.

Input Arguments

words — Input tokens
string vector

Input tokens, specified as a string vector.

Data Types: string

info — Information struct
struct

Information struct with the following fields:

* Feature - String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

* Part0fSpeech - Numerical code used inside the MeCab-ipadic dictionary for the part-of-speech
classification.

Data Types: struct

Output Arguments

posTags — Extracted part-of-speech information
categorical vector

Extracted part-of-speech information, returned as a categorical vector the same size as words.

See Also
addPart0fSpeechDetails | mecabOptions | textanalytics.ja.mecabToLemma |
textanalytics.ja.mecabToNER | tokenizedDocument

Topics

“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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textrankKeywords

Extract keywords using TextRank

Syntax

tbhl
tbhl

textrankKeywords (documents)
textrankKeywords (documents, Name,Value)

Description

tbl = textrankKeywords(documents) extracts keywords and respective scores using TextRank.
The function supports English, Japanese, German, and Korean text. For other languages, try using the
rakeKeywords function instead.

tbl = textrankKeywords(documents,Name,Value) specifies additional options using one or
more name-value pair arguments.

Examples

Extract Keywords Using TextRank

Create an array of tokenized document containing the text data.

textData = [
"MATLAB provides really useful tools for engineers. Scientists use many useful tools in MATL,
"MATLAB and Simulink have many features. Use MATLAB and Simulink for engineering workflows."
"Analyze text and images in MATLAB. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument(textData);

Extract the keywords using the textrankKeywords function.

tbl = textrankKeywords(documents)

tbl=4x3 table

Keyword DocumentNumber Score
"many" "useful" "tools" 1 5.2174
"useful"” "tools" " 1 3.8778
“many" "features" " 2 4.0815
“Analyze" "text" " 3 4.0815

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining

entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single sting using the join and strip
functions.

if size(tbl.Keyword,2) > 1
tbl.Keyword = strip(join(tbl.Keyword));
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end
tbl

tbl=4x3 table
Keyword DocumentNumber Score

"many useful tools" 1 5.2174
"useful tools" 1 3.8778
"many features" 2 4.0815
"Analyze text" 3 4.0815

Specify Maximum Number of Keywords Per Document

Create an array of tokenized documents containing the text data.

textData = [
"MATLAB provides really useful tools for engineers. Scientists use many useful MATLAB toolbo:
"MATLAB and Simulink have many features. Use MATLAB and Simulink for engineering workflows."
"Analyze text and images in MATLAB. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument(textData);

Extract the top two keywords using the textrankKeywords function and setting the
'"MaxNumKeywords' option to 2.

tbl = textrankKeywords(documents, 'MaxNumKeywords',2)

tb1l=4x3 table

Keyword DocumentNumber Score
"useful"” "MATLAB" “toolboxes" 1 4.8695
"useful"” " " 1 2.3612
“many" "features" " 2 4.0815
"Analyze" "text" " 3 4.0815

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining
entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single sting using the join and strip
functions.

if size(tbl.Keyword,2) > 1
tbl.Keyword = strip(join(tbl.Keyword));

end
tbl
tb1=4x3 table
Keyword DocumentNumber Score
"useful MATLAB toolboxes" 1 4.8695
"useful" 1 2.3612
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N

"many features" 4.0815
"Analyze text" 3 4.0815

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: textrankKeywords (documents, 'MaxNumKeywords',b 20) returns at most 20 keywords
per document.

MaxNumKeywords — Maximum number of keywords to return per document
Inf (default) | positive integer

Maximum number of keywords to return per document, specified as the comma-separated pair
consisting of 'MaxNumKeywords' and a positive integer or Inf.

If MaxNumKeywords is Inf, then the function returns all identified keywords.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Window — Size of co-occurrence window
2 (default) | positive integer | Inf

Size of co-occurrence window, specified as a the comma-separated pair consisting of 'Window' and a
positive integer or Inf.

When the window size is 2, the function considers a co-occurrence between two candidate keywords
only when they appear consecutively in a document. When the window size is Inf, then the function
considers a co-occurrence between two candidate keywords when they both appear in the same
document.

Increasing the window size enables the function to find more co-occurrences between keywords
which increases the keyword importance scores. This can result in finding more relevant keywords at
the cost of potentially over-scoring less relevant keywords.

For more information, see “TextRank Keyword Extraction” on page 1-401.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64
Part0fSpeech — Part-of-speech tags

["noun" "proper-noun" "adjective"] (default) | string array | cell array of character vectors |
character vector | categorical array
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Part-of-speech tags to use to extract candidate keywords, specified as the comma-separated pair
consisting of 'Part0fSpeech' and a string array, cell array of character vectors, or a categorical
array containing one or more of the following class names:

+ "adjective" - Adjective

+ "adposition" - Adposition

* "adverb" - Adverb

* "auxiliary-verb" - Auxiliary verb

* "coord-conjunction" - Coordinating conjunction
+ "determiner" - Determiner

* "interjection" - Interjection

* "noun" - Noun

* "numeral" - Numeral

* "particle" - Particle

* "pronoun" - Pronoun

 "proper-noun" - Proper noun

* "punctuation" - Punctuation

* "subord-conjunction" - Subordinating conjucntion
* "symbol" - Symbol

+ "verb" - Verb

* "other" - Other

If PartOfSpeech is a character vector, then it must correspond to a single part-of-speech tag.

For more information, see “TextRank Keyword Extraction” on page 1-401.

Data Types: char | string | cell | categorical

Output Arguments

tbl — Extracted keywords and scores
table

Extracted keywords and scores, returned as a table with the following variables:

* Keyword - Extracted keyword, specified as a 1-by-maxNgramLength string array, where
maxNgramLength is the number of words in the longest keyword.

* DocumentNumber - Document number containing the corresponding keyword.

* Score - Score of keyword.

The function merges multiple keywords into a single keyword when they appear consecutively in the
corresponding document.

If a keyword contains multiple words, then the ith element of the corresponding string array
corresponds to the ith word of the keyword. If the keyword has fewer words that the longest

keyword, then remaining entries of the string array are the empty string "".

For more information, see “TextRank Keyword Extraction” on page 1-401.

1-400



textrankKeywords

More About

Language Considerations
The textrankKeywords function supports English, Japanese, German, and Korean text only.

The textrankKeywords function extracts keywords by identifying candidate keywords based on
their part-of-speech tag. The function uses part-of-speech tags given by the
addPart0fSpeechDetails function which supports English, Japanese, German, and Korean text
only.

For other languages, try using the rakeKeywords instead and specify an appropriate set of
delimiters using the 'Delimiters' and 'MergingDelimiters' options.

Tips

* You can experiment with different keyword extraction algorithms to see what works best with your
data. Because the TextRank keywords algorithm uses a part-of-speech tag-based approach to
extract candidate keywords, the extracted keywords can be short. Alternatively, you can try
extracting keywords using RAKE algorithm which extracts sequences of tokens appearing
between delimiters as candidate keywords. To extract keywords using RAKE, use the
rakeKeywords function. To learn more, see “Extract Keywords from Text Data Using RAKE”.

Algorithms
TextRank Keyword Extraction

For each document, the textrankKeywords function extracts keywords independently using the
following steps based on [1]:

1 Determine candidate keywords:

* Extract tokens with part-of-speech specified by the 'Part0fSpeech' option.
2 Calculate scores for each candidate:

* Create an undirected, unweighted graph with nodes corresponding to the candidate
keywords.

* Add edges between nodes where candidate keywords appear within a window of tokens,
where the window size is given by the 'Window' option.

* Compute the centrality of each node using the PageRank algorithm and weight the scores
according to the number of candidate keywords. For more information, see centrality.

3  Extract top keywords from candidates:

* Select the top third of the candidate keywords according to their scores.

* If any of the candidate keywords appear consecutively in a document, then merge them into a
single keyword and sum the corresponding scores.

* Return the top k keywords, where k is given by the 'MaxNumKeywords' option.
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of text rankKeywords. The
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tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

References

[1] Mihalcea, Rada, and Paul Tarau. "Textrank: Bringing order into text." In Proceedings of the 2004
conference on empirical methods in natural language processing, pp. 404-411. 2004.

See Also
extractSummary | rakeKeywords | textrankScores | tokenizedDocument
Topics

“Extract Keywords from Text Data Using TextRank”
“Extract Keywords from Text Data Using RAKE”

Introduced in R2020b
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textrankScores

Document scoring with TextRank algorithm

Syntax

textrankScores (documents)
textrankScores(bag)

scores
scores

Description

scores = textrankScores(documents) scores documents for importance according to pairwise
similarity values using the TextRank algorithm. To compute similarities and importance scores, the

function uses the BM25 and PageRank algorithms, respectively.

scores = textrankScores(bag) scores documents encoded by a bag-of-words or bag-of-n-grams

model bag.

Examples

Importance of Documents

Create an array of tokenized documents.

str = [
"the quick brown fox jumped over the lazy dog"
"the fast brown fox jumped over the lazy dog"
"the lazy dog sat there and did nothing"
"the other animals sat there watching"];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

tokens: the quick brown fox jumped over the lazy dog
tokens: the fast brown fox jumped over the lazy dog
tokens: the lazy dog sat there and did nothing
tokens: the other animals sat there watching

[e) e clVe (o]

Calculate the TextRank scores.

scores = textrankScores(documents);

Visualize the scores in a bar chart.

figure

bar(scores)
xlabel("Document")
ylabel("Score")
title("TextRank Scores")
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TextRank Scores
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Scores Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.Sonnet;

documents = tokenizedDocument(textData);

bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3527 doublel]
Vocabulary: [1x3527 string]
NumWords: 3527
NumDocuments: 154

Calculate the TextRank scores.

scores = textrankScores(bag);

Visualize the scores in a bar chart.
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figure

bar(scores)
xlabel("Document")
ylabel("Score")
title("TextRank Scores")

o X 102 TextRank Scores

Score
(%] - n
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Document

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0OfNgrams
object. If bag is a bag0fNgrams object, then the function treats each n-gram as a single word.
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Output Arguments

scores — TextRank scores
vector

TextRank scores, returned as a N-by-1 vector, where scores (i) corresponds to the score for the ith
input document and N is the number of input documents.

References

[1] Mihalcea, Rada, and Paul Tarau. "Textrank: Bringing order into text." In Proceedings of the 2004
conference on empirical methods in natural language processing, pp. 404-411. 2004.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
lexrankScores | mmrScores | rougeEvaluationScore | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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tokenDetails

Details of tokens in tokenized document array

Syntax

tdetails = tokenDetails(documents)

Description

tdetails = tokenDetails(documents) returns a table of token details for the tokens in the

tokenizedDocument array documents.

Examples

View Token Details of Documents

Create a tokenized document array.

str = [
"This is an example document. It has two sentences."
"This document has one sentence and an emoticon. :)"
"Here is another example document. :D"];

documents = tokenizedDocument(str);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x5 table
Token DocumentNumber LineNumber Type Language

"This" 1 1 letters en
"is" 1 1 letters en
"an" 1 1 letters en
"example" 1 1 letters en
"document" 1 1 letters en
o 1 1 punctuation en
"It 1 1 letters en
"has" 1 1 letters en

The type variable contains the type of each token. View the emoticons in the documents.

idx = tdetails.Type == "emoticon";
tdetails(idx,:)

ans=2x5 table
Token DocumentNumber LineNumber Type Language
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neym 2 1 emoticon en
w.po 3 1 emoticon en

Add Sentence Details to Documents

Create a tokenized document array.

str = [

"This is an example document. It has two sentences."

"This document has one sentence."

"Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds the sentence
numbers to the table returned by tokenDetails. View the updated token details of the first few
tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)
ans=8x6 table
Token DocumentNumber SentenceNumber LineNumber Type Language

"This" 1 1 1 letters en
"is" 1 1 1 letters en
"an" 1 1 1 letters en
"example" 1 1 1 letters en
"document" 1 1 1 letters en
o 1 1 1 punctuation en
"It 1 2 1 letters en
"has" 1 2 1 letters en

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
tdetails.SentenceNumber == 2;

tdetails(idx, :)

ans=6x6 table

Token DocumentNumber SentenceNumber LineNumber Type Language
"It 3 2 1 letters en
"also" 3 2 1 letters en
"has" 3 2 1 letters en
"two" 3 2 1 letters en
"sentences" 3 2 1 letters en
o 3 2 1 punctuation en
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Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x5 table
Token DocumentNumber LineNumber Type Language

"fairest" 1 1 letters en
"creatures" 1 1 letters en
"desire" 1 1 letters en
"increase" 1 1 letters en
"thereby" 1 1 letters en
"beautys" 1 1 letters en
"rose" 1 1 letters en
"might" 1 1 letters en

Add part-of-speech details to the documents using the addPart0fSpeechDetails function. This
function first adds sentence information to the documents, and then adds the part-of-speech tags to
the table returned by tokenDetails. View the updated token details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);

head(tdetails)

ans=8x7 table
Token DocumentNumber SentenceNumber LineNumber Type Language Par
“"fairest" 1 1 1 letters en adje
“creatures™ 1 1 1 letters en noun
"desire" 1 1 1 letters en verb
"increase" 1 1 1 letters en noun
"thereby" 1 1 1 letters en adve
"beautys" 1 1 1 letters en verb
“rose" 1 1 1 letters en noun
"might" 1 1 1 letters en auxi’

Input Arguments

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Output Arguments

tdetails — Table of token details
table

Table of token details. tdetails has the following variables:

Name Description

Token Token text, returned as a string scalar.

DocumentNumber Index of document that the token belongs to,
returned as a positive integer.

SentenceNumber Sentence number of token in document, returned
as a positive integer. If these details are missing,
then first add sentence details to documents
using the addSentenceDetails function.

LineNumber Line number of token in document, returned as a
positive integer.

Type The type of token, returned as one of the

following:

o ‘'letters' - string of letter characters only
o 'digits' - string of digits only

* 'punctuation' - string of punctuation and
symbol characters only

e 'email-address' - detected email address
e 'web-address' - detected web address

* ‘'hashtag' - detected hashtag (starts with
"#" character followed by a letter)

« 'at-mention' - detected at-mention (starts
with "@" character)

* 'emoticon' - detected emoticon
* 'emoji' - detected emoji

* 'other' - does not belong to the previous
types and is not a custom type

If these details are missing, then first add type
details to documents using the
addTypeDetails function.
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Name

Description

Language

Language of the token, returned as one of the
following:

* 'en' - English
* 'ja' -Japanese
* 'de' - German
* 'ko' - Korean

These language details determine the behavior of
the removeStopWords,
addPart0fSpeechDetails, normalizeWords,
addSentenceDetails, and
addEntityDetails functions on the tokens.

If these details are missing, then first add
language details to documents using the
addLanguageDetails function.

For more information about language support in
Text Analytics Toolbox, see “Language
Considerations”.
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Name Description
PartOfSpeech Part of speech tag, specified as a categorical from
one of the following class names:
* "adjective" - Adjective
* "adposition" - Adposition
* "adverb" - Adverb
* "auxiliary-verb" - Auxiliary verb
* "coord-conjunction" - Coordinating
conjunction
+ "determiner" - Determiner
 "interjection" - Interjection
* "noun" - Noun
* "numeral" - Numeral
+ "particle" - Particle
* "“pronoun" - Pronoun
* "proper-noun" - Proper noun
* "punctuation" - Punctuation
e "subord-conjunction" - Subordinating
conjucntion
* "symbol" - Symbol
* "verb" - Verb
* "other" - Other
If these details are missing, then first add part-of-
speech details to documents using the
addPart0fSpeechDetails function.
Entity Entity tag, specified as one of the following:
* 'location' - detected location
* 'organization' - detected organization
* 'person’' - detected person
+ 'other' - detected entity, not belonging to
the above categories
* 'non-entity' - no entity detected
If these details are missing, then first add entity
details to documents using the
addEntityDetails function.
Lemma Lemma form. If these details are missing, then

first lemma details to documents using the
addLemmaDetails function.
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Compatibility Considerations

tokenDetails returns token type emoji for emoji characters
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument detects emoji characters and the tokenDetails function
reports these tokens with type "emoji". This makes it easier to analyze text containing emoji
characters.

In R2018a, tokenDetails reports emoji characters with type "other". To find the indices of the

tokens with type "emoji" or "other", use the indices idx = tdetails.Type == "emoji" |
tdetails.Type == "other", where tdetails is a table of token details.
See Also

addEntityDetails | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | normalizeWords | tokenizedDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Language Considerations”

“Japanese Language Support”

“German Language Support”

Introduced in R2018a
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topkwords

Most important words in bag-of-words model or LDA topic
Syntax

tbl = topkwords(bag)

tbl = topkwords(bag,k)

tbl = topkwords(ldaMdl,k, topicIdx)

tbl = topkwords( _ ,Name,Value)
Description

tbl = topkwords(bag) returns a table of the five words with the largest word counts in bag-of-
words model bag. The function, by default, is case sensitive.

tbl = topkwords(bag, k) returns a table of the k words with the largest word counts. The
function, by default, is case sensitive.

tbl = topkwords(ldaMdl, k, topicIdx) returns a table of the k words with the highest
probabilities in the latent Dirichlet allocation (LDA) topic topicIdx in the LDA model 1daMd1l.

tbl = topkwords(  ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Most Frequent Words of Bag-of-Words Model
Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
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Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Find the top five words.
T = topkwords(bag);
Find the top 20 words in the model.

k = 20;

T = topkwords(bag, k)

T=20%x2 table

Word Count

"thy" 281
"thou" 234
"lTove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53
"beauty" 52
"nor" 52
"art" 51
"yet" 51
"o" 50

"heart" 50

Highest Probability Words of LDA Topic
Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using bag0OfWords.
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bag = bag0fWords(documents);
Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Find the top 20 words of the first topic.
k = 20;

topicldx = 1;

tbl = topkwords(mdl,k,topicIdx)

tb1=20x2 table

Word Score
"eyes" 0.11155
"beauty" 0.05777
"hath" 0.055778
"still" 0.049801
"true" 0.043825
"mine" 0.033865
"find" 0.031873
"black" 0.025897
"look" 0.023905
"tis" 0.023905
"kind" 0.021913
"seen" 0.021913
"found" 0.017929
"sin" 0.015937
"three" 0.013945

"golden" 0.0099608

Find the top 20 words of the first topic and use inverse mean scaling on the scores.
tbl = topkwords(mdl,k,topicIdx, 'Scaling', 'inversemean')

tb1=20x2 table

Word Score
"eyes" 1.2718
"beauty" 0.59022
"hath" 0.5692
"still" 0.50269
"true" 0.43719
"mine" 0.32764
"find" 0.32544
"black" 0.25931
"tis" 0.23755
"look" 0.22519
"kind" 0.21594
"seen" 0.21594
"found" 0.17326
"sin" 0.15223
"three" 0.13143
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"golden" 0.090698

Create a word cloud using the scaled scores as the size data.

figure
wordcloud(tbl.Word,tbl.Score);

find h
beauty ™

mine .. seen
tis black

found kind

true Sfill hath

sin 100K

Input Arguments

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bag0fWords object.

k — Number of words
nonnegative integer

Number of words to return, specified as a positive integer.

Example: 20

ldaMdl — Input LDA model
ldaModel object
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Input LDA model, specified as an LdaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Scaling', 'inversemean' specifies to use inverse mean scaling on the topic word
probabilities.

Bag-of-Words Model Options

IgnoreCase — Option to ignore case
false (default) | true

Option to ignore case, specified as the comma-separated pair consisting of ' IgnoreCase' and one of
the following:

+ false - treat words differing only by case as separate words.
* true - treat words differing only by case as the same word and merge counts.

This option supports bag-of-words input only.

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.

This option supports bag-of-words input only.
Data Types: logical

LDA Model Options

Scaling — Scaling to apply to topic word probabilities
'none"' (default) | 'inversemean'

Scaling to apply to topic word probabilities, specified as the comma-separated pair consisting of
'Scaling' and one of the following:
* 'none' - Return posterior word probabilities.

* ‘'inversemean' - Normalize the posterior word probabilities per topic by the geometric mean of
the posterior probabilities for this word across all topics. The function uses the formula
Phi.*(log(Phi)-mean(log(Phi), 1)), where Phi corresponds to
1daMdl.TopicWordProbabilities.

This option supports LDA model input only.

Example: 'Scaling', 'inversemean'
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Data Types: char

Output Arguments

tb1l — Table of top words
table | cell array of tables

Table of top words sorted in order of importance or a cell array of tables.

When the input is a bag-of-words model, the table has the following columns:

Word Word specified as a string

Count Number of times the word appears in the bag-of-words model

If bag is a non-scalar array or ' ForceCellQutput' is true, then the function returns the outputs as
a cell array of tables. Each element in the cell array is a table containing the top words of the
corresponding element of bag.

When the input is an LDA model, the table has the following columns:

Word Word specified as a string
Score Word probability for the given LDA topic
Tips

» To find the most frequently seen n-grams in a bag-of-n-grams model, use topkngrams.

See Also
bag0fNgrams | bag0fWords | ldaModel | removeInfrequentWords | removeWords | tfidf |
tokenizedDocument | topkngrams

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

1-419



1 Functions

1-420

topkngrams

Most frequent n-grams

Syntax

tbl
tbl
tbl

topkngrams (bag)
topkngrams (bag, k)
topkngrams( __ ,Name,Value)

Description

tbl = topkngrams(bag) returns a table listing the five most frequently seen n-grams in the bag-of-
n-grams model bag. The function, by default, is case sensitive.

tbl = topkngrams(bag, k) lists the k most frequently seen n-grams in the bag-of-n-grams model
bag. The function, by default, is case sensitive.

tbl = topkngrams( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Most Frequent Bigrams of Bag-of-N-Grams Model
Create a table of the most frequent bigrams of a bag-of-n-grams model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model.
bag = bag0fNgrams(documents)

bag =
bagOfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154
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Find the top 5 bigrams.
tbl = topkngrams(bag)

tbl=5x3 table

Ngram Count NgramLength
“thou" "art" 34 2
"mine" "eye" 15 2
“thy" "self" 14 2
“thou" "dost" 13 2
“mine" “own" 13 2

Find the top 10 bigrams.
tbl = topkngrams(bag,10)
tbl=10x3 table

Ngram Count NgramLength
"thou" "art" 34 2
"mine" "“eye" 15 2
"thy" "self" 14 2
"thou" "dost" 13 2
"mine" "own" 13 2
"thy" "sweet" 12 2
"thy" "love" 11 2
"dost" "thou" 10 2
"thou" "wilt" 10 2
"love" "thee" 9 2

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and trigrams), specify
‘NgramLengths' to be the vector [2 3].

bag = bag0fNgrams(documents, 'NgramLengths',[2 3])

bag =
bagOfNgrams with properties:

Counts: [154x18022 double]
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Vocabulary:

[1x3092 string]

Ngrams: [18022x3 string]

NgramLengths: [2 3]
NumNgrams: 18022

NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).

topkngrams(bag, 10, 'NGramLengths"',2)

ans=10x3 table

Ngram Count NgramLength
"thou" "art" e 34 2
"mine" "eye" e 15 2
"thy" "self" o 14 2
"thou" "dost" o 13 2
"mine" "own" e 13 2
"thy" "sweet" o 12 2
"thy" "love" o 11 2
"dost" "thou" o 10 2
"thou" "wilt" o 10 2
"love" "thee" e 9 2

View the 10 most common n-grams of length 3 (trigrams).

topkngrams(bag, 10, 'NGramLengths',3)

ans=10x3 table

Ngram Count NgramLength
"thy" "sweet" "self" 4 3
"why" "dost" "thou" 4 3
"thy" "self" "thy" 3 3
"thou" "thy" "self" 3 3
"mine" "eye" "heart" 3 3
"thou" "shalt" "find" 3 3
"fair" "kind" "true" 3 3
"thou" "art" "fair" 2 3
"love" "thy" "self" 2 3
"thy" "self" "thou" 2 3

Input Arguments

bag — Input bag-of-n-grams model
bag0fNgrams object

Input bag-of-n-grams model, specified as a bag0fNgrams object.

k — Number of n-grams
nonnegative integer
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Number of n-grams to return, specified as a positive integer.

Example: 20
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'NgramLengths', [2 3] specifies to return the top bigrams and trigrams.

NgramLengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as the comma separated pair consisting of 'NgramLengths' and a positive
integer or a vector of positive integers.

If you specify NgramLengths, then the function returns n-grams of these lengths only. If you do not
specify NgramLengths, then the function returns the top n-grams regardless of length.

Example: [1 2 3]

IgnoreCase — Option to ignore case
false (default) | true

Option to ignore case, specified as the comma-separated pair consisting of ' IgnoreCase' and one of
the following:

+ false - treat n-grams differing only by case as separate n-grams.
* true - treat n-grams differing only by case as the same n-gram and merge counts.

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.

Data Types: logical

Output Arguments

tb1l — Table of top n-grams
table | cell array of tables

Table of top n-grams sorted in order of frequency or a cell array of tables.

The table has the following columns:

Ngram N-gram specified as a string vector
Count Number of times the n-gram appears in the bag-of-n-grams model.
NgramLength Length of the n-gram.
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If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of tables. Each element in the cell array is a table containing the top n-grams of the
corresponding element of bag.

See Also

bagO0fNgrams | bag0fWords | removeInfrequentNgrams | removeNgrams | tfidf |
tokenizedDocument | topkwords

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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topLevelDomains

List of top-level domains

Syntax

domains = topLevelDomains

Description

domains = topLevelDomains returns a string array of common top-level internet domain names

which you can use to tokenize documents containing URLs.

Examples

List of Top-Level Domains

View list of top-level domains used to detect web addresses in strings. Reshape the output for

readability.

domains = topLevelDomains;
reshape(domains, [], 5)

ans = 51x5 string

"com" "ck" "hn"
"edu" el "hr"
"gov" “cm" "ht"
"int" "cn" "hu"
"mil" "co" "id"
"net" "cr" "ie"
"org" "cu" il
"info" "cv" "im"
"ac" ew" "in"
"ad" "cx" "io"
"ae" “cy" "ig"
"af" "cz" "ir"
"ag" "de" "is"
"ai" "dj" "it"
"am" "dk" "je"
"ao" "dm" "ym"
"aq" "do" "jo"
"ar" "dz" "jp"
"as" "ec" "ke"
"at" "ee" "kg"
"au" “eg" "kh"
"aw" "er" "ki"
Tax" "es" "km"
"az" "et" "kp"
"ba" "eu" "kr"
"bb" it "kw"
"bd" "y "ky"
"be" "fk" "kz"

"mp"”
"mg"
"
"ms "
"t
"mu
mv
mw
mx
"y "
"mz"
"na
"net
"net
IIn.fll
"ng"
IInill
IIn'LII
"no
"np"
o
"nu®
Nzt
"om
"pa"
"pe"
|Ip.fll
"ng"

"Si"
"Sj 1
"Sk"
Ilslll
"Sm"
"Sn"
"SO"
||Sr.||
"St"
"SU"
"SV"
SX
"Sy"
"SZ"
"tC"
"td"
"tf"
"tg"
"th"
"tj 1
"tk"
||t1||
"tm"
"tn"
"tO"
"tr"
"tt"
"tV"
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Ilbfll Ilfmll II'LaII Ilphll Il.twll

Ilbgll Ilfoll II'LbII Ilpkll II.tZII
See Also
addPartOfSpeechDetails | addSentenceDetails | addTypeDetails | tokenDetails |
tokenizedDocument
Topics

“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a
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trainWordEmbedding

Train word embedding

Syntax

emb trainWordEmbedding(filename)

emb = trainWordEmbedding(documents)
emb = trainWordEmbedding(  ,Name,Value)
Description

emb = trainWordEmbedding(filename) trains a word embedding using the training data stored
in the text file filename. The file is a collection of documents stored in UTF-8 with one document per
line and words separated by whitespace.

emb = trainWordEmbedding(documents) trains a word embedding using documents by creating
a temporary file with writeTextDocument, and then trains an embedding using the temporary file.

emb = trainWordEmbedding( ,Name, Value) specifies additional options using one or more
name-value pair arguments. For example, 'Dimension', 50 specifies the word embedding dimension
to be 50.

Examples

Train Word Embedding from File

Train a word embedding of dimension 100 using the example text file
exampleSonnetsDocuments. txt. This file contains preprocessed versions of Shakespeare's
sonnets, with one sonnet per line and words separated by a space.

filename = "exampleSonnetsDocuments.txt";
emb = trainWordEmbedding(filename)

Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x502 string]

View the word embedding in a text scatter plot using tsne.
words = emb.Vocabulary;
V = word2vec(emb,words);

XY = tsne(V);
textscatter(XY,words)
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Train Word Embedding from Documents

Train a word embedding using the example data sonnetsPreprocessed. txt. This file contains
preprocessed versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text into
documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.
emb = trainWordEmbedding(documents)
Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]
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Visualize the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)
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Specify Word Embedding Options

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Specify the word embedding dimension to be 50. To reduce the number of words discarded by the
model, set 'MinCount' to 3. To train for longer, set the number of epochs to 10.

emb = trainWordEmbedding(documents,
'Dimension', 50,
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'MinCount',3, ...
"NumEpochs"',10)

Training: 100% Loss: 0

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x750 string]

Remaining time:

0 hours 0 minutes.

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb, words);
XY = tsne(V);
textscatter(XY,words)
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Input Arguments

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char
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documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Dimension', 50 specifies the word embedding dimension to be 50.

Dimension — Dimension of word embedding
100 (default) | positive integer

Dimension of the word embedding, specified as the comma-separated pair consisting of
'Dimension' and a nonnegative integer.
Example: 300

Window — Size of context window
5 (default) | nonnegative integer

Size of the context window, specified as the comma-separated pair consisting of 'Window' and a
nonnegative integer.

Example: 10

Model — Model
'skipgram' (default) | 'cbow'

Model, specified as the comma-separated pair consisting of 'Model' and 'skipgram' (skip gram) or
"cbow' (continuous bag-of-words).

Example: 'cbow'

DiscardFactor — Factor to determine word discard rate
le-4 (default) | positive scalar

Factor to determine the word discard rate, specified as the comma-separated pair consisting of
'‘DiscardFactor' and a positive scalar. The function discards a word from the input window with
probability 1-sqrt(t/f) - t/f where fis the unigram probability of the word, and t is
DiscardFactor. Usually, DiscardFactor is in the range of 1e-3 through le-5.

Example: 0.005

LossFunction — Loss function
'ns' (default) | 'hs' | 'softmax'

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and 'ns'
(negative sampling), 'hs' (hierarchical softmax), or 'softmax' (softmax).

Example: 'hs'

NumNegativeSamples — Number of negative samples
5 (default) | positive integer
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Number of negative samples for the negative sampling loss function, specified as the comma-
separated pair consisting of 'NumNegativeSamples' and a positive integer. This option is only valid
when LossFunctionis 'ns'.

Example: 10

NumEpochs — Number of epochs
5 (default) | positive integer

Number of epochs for training, specified as the comma-separated pair consisting of 'NumEpochs'
and a positive integer.

Example: 10

MinCount — Minimum count of words
5 (default) | positive integer

Minimum count of words to include in the embedding, specified as the comma-separated pair
consisting of 'MinCount' and a positive integer. The function discards words that appear fewer than
MinCount times in the training data from the vocabulary.

Example: 10

NGramRange — Inclusive range for subword n-grams
[3 6] (default) | vector of two nonnegative integers

Inclusive range for subword n-grams, specified as the comma-separated pair consisting of
'NGramRange' and a vector of two nonnegative integers [min max]. If you do not want to use n-
grams, then set 'NGramRange' to [0 0O].

Example: [5 10]

InitialLearnRate — Initial learn rate
0.05 (default) | positive scalar

Initial learn rate, specified as the comma-separated pair consisting of 'InitiallLearnRate' and a
positive scalar.

Example: 0.01

UpdateRate — Rate for updating learn rate
100 (default) | positive integer

Rate for updating the learn rate, specified as the comma-separated pair consisting of 'UpdateRate'
and a positive integer. The learn rate decreases to zero linearly in steps every N words where N is the
UpdateRate.

Example: 50

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

* 0 - Do not display verbose output.
* 1 - Display progress information.
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Example: 'Verbose',0

Output Arguments

emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

More About

Language Considerations
File input to the trainWordEmbedding function requires words separated by whitespace.

For files containing non-English text, you might need to input a tokenizedDocument array to
trainWordEmbedding.

To create a tokenizedDocument array from pretokenized text, use the tokenizedDocument
function and set the ' TokenizeMethod' option to 'none’.

Tips

The training algorithm uses the number of threads given by the function maxNumCompThreads. To
learn how to change the number of threads used by MATLAB, see maxNumCompThreads.

See Also

doc2sequence | fastTextWordEmbedding | readWordEmbedding | tokenizedDocument |
vec2word | word2vec | wordEmbedding | wordEmbeddinglLayer | wordEncoding |
writeWordEmbedding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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transform

Transform documents into lower-dimensional space

Syntax

dscores = transform(1lsaMdl,documents)
dscores = transform(lsaMdl,bag)
dscores = transform(lsaMdl, counts)
dscores = transform(ldaMdl,documents)
dscores = transform(ldaMdl,bag)
dscores = transform(ldaMdl, counts)
dscores = transform(___ ,Name,Value)
Description

dscores = transform(lsaMdl,documents) transforms documents into the semantic space of
the latent semantic analysis (LSA) model 1saMd1l.

dscores = transform(lsaMdl,bag) transforms documents represented by the bag-of-words or
bag-of-n-grams model bag into the semantic space of the LSA model 1saMdl.

dscores = transform(lsaMdl, counts) transforms documents represented by the matrix of
word counts into the semantic space of the LSA model 1saMd1.

dscores = transform(ldaMdl,documents) transforms documents into the latent Dirichlet
allocation (LDA) topic probability space of LDA model 1daMdl. The rows of dscores are the topic
mixture representations of the documents.

dscores = transform(ldaMdl,bag) transforms documents represented by the bag-of-words or
bag-of-n-grams model bag into the LDA topic probability space of LDA model 1daMd1.

dscores = transform(ldaMdl, counts) transforms documents represented by the matrix of
word counts into the LDA topic probability space of LDA model 1daMd1l.

dscores = transform(  ,Name,Value) specifies additional options using one or more name-
value pair arguments. These name-value pairs only apply if the input model is an 1daModel object.

Examples

Transform Documents into LSA Semantic Space

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);



transform

textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.

bagO0fWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numCompnents = 20;
mdl = fitlsa(bag,numCompnents)

mdl =
lsaModel with properties:

NumComponents: 20
ComponentWeights: [1x20 double]
DocumentScores:

Vocabulary:

154x20 double]

1x3092 string]

[
[
WordScores: [3092x20 double]
[
2

FeatureStrengthExponent:

Use transform to transform the first 10 documents into the semantic space of the LSA model.

dscores = transform(mdl,documents(1:10))

dscores = 10x20
5.6059 -1.8559 0.9286 -0.7086
7.3069 -2.3578 1.8359 -2.3442
7.1056 -2.3508 -2.8837 -1.0688
8.6292 -3.0471 -0.8512 -0.4356
1.0434 1.7490 0.8703 -2.2315
6.8358 -2.0806 -3.3798 -1.0452
2.3847 0.3923 -0.4323 -1.5340
3.7925 -0.3941 -4.4610 -0.4930
4.6522 0.7188 -1.1787 -0.8996
8.8218 -0.8168 -2.5101 1.1197

Transform Documents into LDA Topic Mixtures

.4652
.5776
.3462
.3055
.1221
.2075
.4023
.4651
.3360
.8673

To reproduce the results in this example, set rng to 'default’.

rng('default"')

.8340
.0310
.6962
.4671
.2848
.0970
.0396
.3404
.4531
.2336

.6751
.7948
.0334
.4219
.0522
.4477
.0326
.5493
.1935
.0768

[cNoNoNoNoNoNoNoN N o]

.0611
.3411
.0472
.8454
.6975
.2080
.3776
.1470
.3328
.1943

-0.2268
1.1700
-0.4916
0.8270
-1.7191
-0.9532
-0.2101
-0.5065
0.8640
0.7629
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Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

bagOfWords.

Counts: [154x3092 doublel]
Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Fit an LDA model with five topics.

numTopics = 5;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.113645 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.00 | | 1.212e+03 | 1.250 | 0 |
| 1 | 0.03 | 1.2300e-02 | 1.112e+03 | 1.250 | 0 |
| 2 | 0.03 | 1.3254e-03 | 1.102e+03 | 1.250 | 0 |
| 3 0.02 | 2.9402e-05 | 1.102e+03 | 1.250 | 0 |
mdl =
ldaModel with properties:
NumTopics: 5
WordConcentration: 1
TopicConcentration: 1.2500

CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:

TopicOrder:

FitInfo:

[154x5 doublel]
[3092x5 double]
[1x3092 string]

[1x1 struct]

[0.2000 0.2000 0.2000 0.2000 0.2000]

"initial-fit-probability'

Use transform to transform the documents into a vector of topic probabilities. You can visualize
these mixtures using stacked bar charts. View the topic mixtures of the first 10 documents.

topicMixtures = transform(mdl,documents(1:10));

figure



transform

barh(topicMixtures, 'stacked")

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(l:numTopics), 'Location', 'northeastoutside’)

Topic Mixtures

-Tclp'u: 1
-Tclp'H:E
:Tclp'u: 3
-Tclp'u:-'-t
-Tclp'u: 5

Document

0 0.2 0.4 0.6 0.8 1
Topic Probability

Transform Word Count Matrix into LDA Topic Mixtures

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to 'default'.

rng('default"')
numTopics = 20;
mdl = fitlda(counts,numTopics)
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Initial topic assignments sampled in 0.11319 seconds.
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.31 | | 1.159e+03 | 5.000 | 0 |
| 1| 0.34 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.13 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.13 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.13 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5| 0.26 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.11 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =
ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 doublel]
Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]
Use transform to transform the documents into a vector of topic probabilities.
topicMixtures = transform(mdl,counts(1:10,:))
topicMixtures = 10x20
0.0167 0.0035 0.1645 0.0977 0.0433 0.0833 0.0987 0.0033 0
0.0711 0.0544 0.0116 0.0044 0.0033 0.0033 0.0431 0.0053 0
0.0293 0.0482 0.1078 0.0322 0.0036 0.0036 0.0464 0.0036 0
0.0055 0.0962 0.2403 0.0033 0.0296 0.1613 0.0164 0.0955 0
0.0341 0.0224 0.0341 0.0645 0.0948 0.0038 0.0189 0.1099 0
0.0445 0.0035 0.1167 0.0034 0.0446 0.0583 0.1268 0.0169 0
0.1720 0.0764 0.0090 0.0180 0.0325 0.1213 0.0036 0.0036 0
0.0043 0.0033 0.1248 0.0033 0.0299 0.0033 0.0690 0.1699 0
0.0412 0.0387 0.0555 0.0165 0.0166 0.0433 0.0033 0.0038 0
0.0362 0.0035 0.1117 0.0304 0.0034 0.1248 0.0439 0.0340 0

Input Arguments

1saMdl — Input LSA model
lsaModel object

Input LSA model, specified as an LsaModel object.

ldaMdl — Input LDA model
ldaModel object

.0299
.0145
.0064
.0163
.0187
.0034
.0505
.0695
.0048
.0168

[oNoNoNoNoNoNoNoNoNO]
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Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a tokenizedDocument, then it must be a column vector. If
documents is a string array or a cell array of character vectors, then it must be a row of the words of
a single document.

Tip To ensure that the function does not discard useful information, you must first preprocess the
input documents using the same steps used to preprocess the documents used to train the model.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts (i, j) corresponds to the number of times the

jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'IterationLimit', 200 sets the iteration limit to 200.

Note These name-value pairs only apply if the input model is an 1daModel object.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* ‘'columns' - Input is a transposed matrix of word counts with columns corresponding to
documents.

This option only applies if you specify the input documents as a matrix of word counts.
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Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn', 'columns', then you might experience a significant reduction in optimization-
execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

Example: 'IterationLimit', 200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

Output Arguments

dscores — Output document scores
matrix

Output document scores, returned as a matrix of score vectors.

See Also
bagOfWords | fitlda | fitlsa | ldaModel | logp | LsaModel | predict | wordcloud

Topics
“Analyze Text Data Using Topic Models”

“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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upper

Convert documents to uppercase

Syntax

newDocuments = upper(documents)

Description

newDocuments = upper(documents) converts each lowercase character in the input documents

to the corresponding uppercase character, and leaves all other characters unchanged.

Examples

Convert Documents to Uppercase

Convert all lowercase characters in an array of documents to uppercase.

documents = tokenizedDocument([
"An Example of a Short Sentence"
"A Second Short Sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: An Example of a Short Sentence

4 tokens: A Second Short Sentence

newDocuments = upper(documents)

newDocuments =
2x1 tokenizedDocument:

6 tokens: AN EXAMPLE OF A SHORT SENTENCE
4 tokens: A SECOND SHORT SENTENCE

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array
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Output documents, returned as a tokenizedDocument array.

See Also

decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | lower |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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vaderSentimentScores

Sentiment scores with VADER algorithm

Syntax

compoundScores = vaderSentimentScores(documents)
compoundScores = vaderSentimentScores(documents,Name,Value)
[compoundScores,positiveScores,negativeScores,neutralScores] =
vaderSentimentScores ( )

Description

Use vaderSentimentScores to evaluate sentiment in tokenized text with the Valence Aware
Dictionary and sEntiment Reasoner (VADER) algorithm. The vaderSentimentScores function uses,
by default, the VADER sentiment lexicon and modifier word lists.

The function supports English text only.

compoundScores = vaderSentimentScores(documents) returns sentiment scores for
tokenized documents. The function calculates the compound scores by aggregating individual token
scores, adjusted according to the algorithm rules and then normalized between -1 and 1. The function
discards all tokens with a single character, not present in the sentiment lexicon.

compoundScores = vaderSentimentScores(documents,Name,Value) specifies additional
options using one or more name-value pairs.

[compoundScores,positiveScores,negativeScores,neutralScores] =
vaderSentimentScores( ) also returns the ratios for proportions of the documents which are
positive, negative, and neutral, respectively, using any of the previous syntaxes.

Examples

Evaluate Sentiment in Text

Create a tokenized document.

str = [
"The book was VERY good!!!!I"
"The book was not very good.'
documents = tokenizedDocument(str

'1;
);
Evaluate the sentiment of the tokenized documents. Scores close to 1 indicate positive sentiment,
scores close to -1 indicate negative sentiment, and scores close to 0 indicate neutral sentiment.
compoundScores = vaderSentimentScores(documents)

2x1

compoundScores

0.7264
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-0.3865

Evaluate Sentiment Using Custom Lexicon

Sentiment analysis algorithms such as VADER rely on annotated lists of words called sentiment
lexicons. For example, VADER uses a sentiment lexicon with words annotated with a sentiment score
ranging from -1 to 1, where scores close to 1 indicate strong positive sentiment, scores close to -1
indicate strong negative sentiment, and scores close to zero indicate neutral sentiment.

To analyze the sentiment of text using the VADER algorithm, use the vaderSentimentScores
function. If the sentiment lexicon used by the vaderSentimentScores function does not suit the
data you are analyzing, for example, if you have a domain-specific data set like medical or
engineering data, then you can use your own custom sentiment lexicon. For an example showing how
to generate a domain specific sentiment lexicon, see “Generate Domain Specific Sentiment Lexicon”.

Create a tokenized document array containing the text data to analyze.

textData = [

"This company is showing extremely strong growth."

"This other company is accused of misleading consumers."];
documents = tokenizedDocument(textData);

Load the example domain specific lexicon for finance data.

filename = "financeSentimentlLexicon.csv";

tbl = readtable(filename);

head (tbl)

ans=8x2 table

Token SentimentScore

{'innovative' } 1
{'efficiency' } 0.91852
{'strong' } 0.82362
{'efficiently'} 0.81475
{'creative' } 0.74264
{'enhance' } 0.73791
{'innovations'} 0.72985
{"improved' } 0.71476

Evaluate the sentiment using the vaderSentimentScores function and specify the custom
sentiment lexicon using the 'SentimentlLexicon' option. Scores close to 1 indicate positive
sentiment, scores close to -1 indicate negative sentiment, and scores close to 0 indicate neutral
sentiment.

compoundScores = vaderSentimentScores(documents, 'SentimentLexicon',tbl)
compoundScores = 2x1

0.2834

-0.1273
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Boosters’',["verry" "verrry"] specifies to use the boosters "verry" and "verrrry".

SentimentLexicon — Sentiment lexicon
table

Sentiment lexicon, specified as a table with the following columns:

* Token - Token, specified as a string scalar. The tokens must be lowercase.
* SentimentScore - Sentiment score of token, specified as a numeric scalar.

When evaluating sentiment, the software, by default, ignores tokens with one character and replaces
emojis with an equivalent textual description before computing the sentiment scores. For example,
the software replaces instances of the emoji "[J[]with the text "grinning face" and then evaluates the
sentiment scores. If you provide tokens with one character or emojis with corresponding sentiment
scores in SentimentLexicon, then the function does not remove or replace these tokens.

The default sentiment lexicon is the VADER sentiment lexicon.

Data Types: table

Boosters — List of booster words or n-grams
string array

List of booster words or n-grams, specified as a string array.

The function uses booster n-grams to boost the sentiment of subsequent tokens. For example, words
like "absolutely" and "amazingly".

For a list of words, the list must be a column vector. For a list of n-grams, the list has size
NumNgrams-by-maxN , where NumNgrams is the number of n-grams, and maxN is the length of the
largest n-gram. The (i, j)th element of the list is the jth word of the ith n-gram. If the number of
words in the ith n-gram is less than maxN, then the remaining entries of the ith row of the list are
empty.

The booster n-grams must be lowercase.

The default list of booster n-grams is the VADER booster list.
Data Types: string

Dampeners — List of dampener words or n-grams
string array
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List of dampener words or n-grams, specified as a string array.

The function uses dampener n-grams to dampen the sentiment of subsequent tokens. For example,
words like "hardly" and "somewhat".

For a list of words, the list must be a column vector. For a list of n-grams, the list has size
NumNgrams-by-maxN , where NumNgrams is the number of n-grams, and maxN is the length of the
largest n-gram. The (i, j)th element of the list is the jth word of the ith n-gram. If the number of
words in the ith n-gram is less than maxN, then the remaining entries of the ith row of the list are
empty.

The dampener n-grams must be lowercase.

The default list of dampener n-grams is the VADER booster list.
Data Types: string

Negations — List of negation words
string array

List of negation words, specified as a string array.

The function uses negation words to negate the sentiment of subsequent tokens. For example, words
like "not" and "isn't".

The negation words must be lowercase.

The default list of negation words is the VADER negation list.
Data Types: string

Output Arguments

compoundScores — Compound sentiment scores
numeric vector

Compound sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value compoundScores (i) corresponds to the compound sentiment score of
documents(i).

The function determines the compound scores by aggregating individual token scores, adjusts them
according to the VADER algorithm rules, and then normalizes them between -1 and 1.

positiveScores — Positive sentiment scores
numeric vector

Positive sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value positiveScores (i) corresponds to the positive sentiment score of
documents(i).

negativeScores — Negative sentiment scores
numeric vector

Negative sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value negativeScores (i) corresponds to the negative sentiment score of
documents(i).
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neutralScores — Neutral sentiment scores
numeric vector

Neutral sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value neutralScores (i) corresponds to the neutral sentiment score of
documents(i).

References

[1] Hutto, Clayton J., and Eric Gilbert. "Vader: A parsimonious rule-based model for sentiment
analysis of social media text." In Eighth international AAAI conference on weblogs and social
media. 2014.

See Also
ratioSentimentScores | tokenizedDocument

Topics

“Analyze Sentiment in Text”

“Generate Domain Specific Sentiment Lexicon”
“Train a Sentiment Classifier”

“Create Simple Text Model for Classification”
“Analyze Text Data Containing Emojis”
“Analyze Text Data Using Topic Models”

Introduced in R2019b
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Map embedding vector to word

Syntax

words = vec2word(emb,M)

[words,dist] = vec2word(emb,M)
vec2word(emb,M, k)

vec2word(  ,'Distance’',distance)

Description
words = vec2word(emb,M) returns the closest words to the embedding vectors in the rows of M.

[words,dist] = vec2word(emb,M) returns the closest words to the embedding vectors in M, and
returns the distances dist of each to their source vectors.

vec2word(emb,M, k) returns the top k closest words.

vec2word ( , 'Distance',distance) specifies the distance metric.

Examples

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb

fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.
italy = word2vec(emb,"Italy");

rome = word2vec(emb, "Rome");

paris = word2vec(emb, "Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"
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Find Closest Words to Vector
Find the top five closest words to a word embedding vector and their distances.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.
italy = word2vec(emb,"Italy");

rome = word2vec(emb, "Rome");

paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris toa word using vec2word. Find the top five closest words
using the Euclidean distance metric.

k = 5;
M = italy - rome + paris;
[words,dist] = vec2word(emb,M,k, 'Distance’', 'euclidean');

Plot the words and distances in a bar chart.

figure;

bar(dist)

xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")
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Distances to Vector

Distance

France Paris [taly Germany  Europe

Word

Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

M — Word embedding vectors
matrix

Word embedding vectors, specified as a matrix. Each row of M is a word embedding vector. M must
have emb.Dimension columns.

k — Number of closest words
positive integer

Number of closest words to return, specified as a positive integer.

distance — Distance metric
'cosine' (default) | 'euclidean’

Distance metric, specified as 'cosine' or 'euclidean’.
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Output Arguments

words — Output words
string vector

Output words, returned as a string vector.

dist — Distance of words to source vectors
vector

Distance of words to their source vectors, returned as a vector.

See Also

doc2sequence | fastTextWordEmbedding | ind2word | isVocabularyWord |
tokenizedDocument | word2ind | word2vec | wordEmbedding | wordEmbeddingLayer |
wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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word2ind

Map word to encoding index

Syntax

M
M

Description

word2ind(enc,words)
word2ind(enc,words, 'IgnoreCase', true)

M = word2ind(enc,words) returns the indices of words in the encoding enc. The function, by
default, is case sensitive.

M = word2ind(enc,words, 'IgnoreCase', true) returns indices ignoring case using any of the
previous syntaxes. If multiple words in the encoding differ only in case, then the function returns the
index corresponding to one of them and does not return any particular index.

Examples

Map Words to Encoding Indices

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
extractFileText(filename);

ta = split(str,newline);

nts = tokenizedDocument (textData);

str =
textDa
docume

documents(1:10)

ans =
10x1

70
71
65
71
61
68
64
70
70
69

tokenizedDocument:

tokens: fairest creatures desire increase thereby beautys rose might never die riper time
tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
tokens: look thy glass tell face thou viewest time face form another whose fresh repair tl
tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial
tokens: lo orient gracious light l1ifts up burning head eye doth homage newappearing sight
tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bels

Create a word encoding.

enc =

wordEncoding(documents)
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enc =
wordEncoding with properties:

NumWords: 3092
Vocabulary: [1x3092 string]

Map the words "rose", "love", and "beauty" to encoding indices using the word2ind function.

words = ["rose" "love" "beauty"];
idx = word2ind(enc,words)

idx = 1Ix3

7 387 79

Input Arguments

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

Output Arguments

M — Vector of word encoding indices
vector of positive integers

Vector of word encoding indices.

See Also
fastTextWordEmbedding | ind2word | isVocabularyWord | tokenizedDocument | word2vec |
wordEmbedding | wordEmbeddinglLayer | wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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word2vec

Map word to embedding vector

Syntax

M
M

word2vec (emb,words)
word2vec(emb,words, 'IgnoreCase', true)

Description

M = word2vec(emb,words) returns the embedding vectors of words in the embedding emb. If a
word is not in the embedding vocabulary, then the function returns a row of NaNs. The function, by
default, is case sensitive.

M = word2vec(emb,words, 'IgnoreCase', true) returns the embedding vectors of words
ignoring case using any of the previous syntaxes. If multiple words in the embedding differ only in
case, then the function returns the vector corresponding to one of them and does not return any
particular vector.

Examples

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.
italy = word2vec(emb,"Italy");

rome = word2vec(emb, "Rome");

paris = word2vec(emb, "Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"
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Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell

Output Arguments

M — Matrix of word embedding vectors
matrix

Matrix of word embedding vectors.

See Also
doc2sequence | fastTextWordEmbedding | isVocabularyWord | tokenizedDocument |
vec2word | word2ind | wordEmbedding | wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordcloud

Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA model

Syntax

wordcloud(str)
wordcloud(documents)
wordcloud(bag)

wordcloud(tbl,wordVar,sizeVar)
wordcloud(words,sizeData)
wordcloud(C)

wordcloud(ldaMdl, topicIdx)

wordcloud(  ,Name,Value)
wordcloud(parent, )

wc = wordcloud( )
Description

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It adds
support for creating word clouds directly from string arrays, and creating word clouds from bag-of-
words models, bag-of-n-gram models, and LDA topics. If you do not have Text Analytics Toolbox
installed, then see wordcloud.

wordcloud(str) creates a word cloud chart by tokenizing and preprocessing the text in str, and
then displaying the words with sizes corresponding to the word frequency counts. This syntax
supports English, Japanese, German, and Korean text.

wordcloud(documents) creates a word cloud chart from the words appearing in documents.
wordcloud(bag) creates a word cloud chart from the bag-of-words or bag-of-n-grams model bag.

wordcloud(tbl,wordVar, sizeVar) creates a word cloud chart from the table tbl. The variables
wordVar and sizeVar in the table specify the words and word sizes respectively.

wordcloud(words,sizeData) creates a word cloud chart from elements of words with word sizes
specified by sizeData.

wordcloud(C) creates a word cloud chart from the elements of categorical array C using frequency
counts.

wordcloud(ldaMdl, topicIdx) creates a word cloud chart from the topic with index topicIdx of
the LDA model ldaMdl.

wordcloud(  ,Name,Value) specifies additional WordCloudChart properties using one or
more name-value pair arguments.



wordcloud

wordcloud(parent, ) creates the word cloud in the figure, panel, or tab specified by parent.

wc = wordcloud( ) returns the WordCloudChart object. Use wc to modify properties of the
word cloud after creating it. For a list of properties, see WordCloudChart Properties.

Examples

Create Word Cloud from Text Data

Extract the text from sonnets. txt using extractFileText and display the text of the first sonnet.

str = extractFileText("sonnets.txt");
extractBefore(str,"II")

ans =
“THE SONNETS

by William Shakespeare

I

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

Display the words from the sonnets in a word cloud.

figure
wordcloud(str);
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Create Word Cloud from Tokenized Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Visualize the documents using a word cloud.

figure
wordcloud(documents);
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Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.

Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline

characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bag0OfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 doublel]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154
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Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);
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Create Word Cloud from Table

Load the example data sonnetsTable. The table tbl contains a list of words in the variable Word,
and the corresponding frequency counts in the variable Count.

load sonnetsTable

head(tbl)
ans=8x2 table
Word Count

{'"'""tis"' } 1
{"'Amen'"' } 1
{'"'Fair' } 2
{'"'Gainst'} 1
{''Since"' } 1
{'"'This"' } 2
{''"Thou' } 1
{''Thus"' } 1
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Plot the table data using wordcloud. Specify the words and corresponding word sizes to be the Word
and Count variables respectively.

figure

wordcloud(tbl, 'Word', 'Count');
title("Sonnets Word Cloud")

Sonnets Word Cloud
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Create Word Cloud from LDA Topic

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
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bag

bagO0fWords (documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.
mdl = fitlda(bag,20, 'Verbose',0)

mdl =
ldaModel with properties:

NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Visualize the first four topics using word clouds.

figure

for topicldx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic: " + topicIdx)

end
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Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.

Example: ["an example of a short document";"a second short document"]

Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

tbl — Input table
table

Input table, with columns specifying the words and word sizes. Specify the words and the

corresponding word sizes in the variables given by wordVar and sizeVar input arguments
respectively.
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Data Types: table

wordVar — Table variable for word data
string scalar | character vector | numeric index | logical vector

Table variable for word data, specified as a string scalar, character vector, numeric index, or a logical
vector.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char | string

sizeVar — Table variable for size data
string scalar | character vector | numeric index | logical vector

Table variable for size data, specified as a string scalar, character vector, numeric index, or a logical
vector.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char | string

words — Input words
string vector | cell array of character vectors

Input words, specified as a string vector or cell array of character vectors.

Data Types: string | cell

sizeData — Word size data
numeric vector

Word size data, specified as a numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

C — Input categorical data
categorical array

Input categorical data, specified as a categorical array. The function plots each unique element of C
with size corresponding to histcounts(C).

Data Types: categorical

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a bag0fNgrams
object. If bag is a bag0OfNgrams object, then the function treats each n-gram as a single word.

1daMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.
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parent — Parent
figure | panel | tab

Parent specified as a figure, panel, or tab.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'HighlightColor', 'blue' specifies the highlight color to be blue.

The WordCloudChart properties listed here are only a subset. For a complete list, see
WordCloudChart Properties.

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

Maximum number of words to display, specified as a non-negative integer. The software displays the
MaxDisplayWords largest words.

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color name |
matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an N-by-3
matrix where N is the length of WordData. If Color is a matrix, then each row corresponds to an
RGB triplet for the corresponding word in WordData.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

'green' ‘g’ [0 1 0] '#00FF0O0'

'blue’ ‘b [0 0 1] '#000OFF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" E—
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Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code
'white' 'w' [11 1] '"#FFFFFF' ]

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319" I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’
Example: [0 0 1]

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color name

Word highlight color, specified as an RGB triplet, or a character vector containing a color name. The
software highlights the largest words with this color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800"', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

'green' ‘g’ [0 1 0] '#00OFF0O0O'

'blue’ 'b' [0 0 1] '#000OFF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" E—
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Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code
'white' 'w' [11 1] '"#FFFFFF' ]

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' —
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’
Example: [0 0 1]

Shape — Shape of word cloud
‘oval' (default) | ' rectangle’

Shape of word cloud chart, specified as 'oval' or 'rectangle’.

Example: 'rectangle’

Output Arguments

wc — WordCloudChart object
WordCloudChart object

WordCloudChart object. You can modify the properties of a WordCloudChart after it is created. For
more information, see WordCloudChart Properties.

More About

Language Considerations

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.

For other languages, you might need to manually preprocess your text data and specify unique words
and corresponding sizes in wordcloud.

To specify word sizes in wordcloud, input your data as a table or arrays containing the unique words
and corresponding sizes.
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See Also

bagOfNgrams | bag0OfWords | textscatter | textscatter3 | tokenizedDocument |
wordCloudCounts

Topics
“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordCloudCounts

Count words for word cloud creation

Syntax

T = wordCloudCounts(str)

Description

T = wordCloudCounts(str) tokenizes and preprocesses the text in str for word cloud creation
and returns a table T of words and frequency counts. The function supports English, Japanese,
German, and Korean text.

Examples

Word Cloud Frequency Counts

Extract the text from sonnets. txt using extractFileText.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I1");

ii = strfind(str,"II");

start = i(1);

fin = ii(1);
extractBetween(str,start,fin-1)

ans =
"I

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

Tokenize and preprocess the sonnets text and create a table of word frequency counts.
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T = wordCloudCounts(str);

head(T)

ans=8x2 table
Word Count
"thy" 281
"thou" 235
"lTove" 188
"thee" 162
"eyes" 90
"doth" 88
"make" 63
"mine" 63

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.

Example: ["an example of a short document";"a second short document"]

Data Types: string | char | cell

Output Arguments

T — Table of word counts
table

Table of words counts sorted in order of importance. The table has columns:

Word String scalar of the word.

Count The number of times the word appears in the documents. The function
groups the counts of words that differ only by case or have a common stem
according to normalizeWords. For example, the function groups the counts

for "walk", "Walking", "walking", and "walks".

More About

Language Considerations

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.

See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument | wordcloud
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Topics

“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordEmbedding

Word embedding model to map words to vectors and back

Description

A word embedding, popularized by the word2vec, GloVe, and fastText libraries, maps words in a
vocabulary to real vectors.

The vectors attempt to capture the semantics of the words, so that similar words have similar vectors.
Some embeddings also capture relationships between words, such as "king is to queen as man is to
woman". In vector form, this relationship is king - man + woman = queen.

Creation

Create a word embedding by loading a pretrained embedding using fastTextWordEmbedding,
reading an embedding from a file using readWordEmbedding, or by training an embedding using
trainWordEmbedding.

Properties

Dimension — Dimension of word embedding
positive integer

Dimension of the word embedding, specified as a positive integer.
Example: 300

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions

vec2word Map embedding vector to word
word2vec Map word to embedding vector
isVocabularyWord Test if word is member of word embedding or encoding

writeWordEmbedding Write word embedding file

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package.
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Type fastTextWordEmbedding at the command line.

fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support
package is not installed, then the function provides a link to the required support package in the Add-
On Explorer. To install the support package, click the link, and then click Install. Check that the
installation is successful by typing emb = fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding
emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

If the required support package is installed, then the function returns a wordEmbedding object.

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]
Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.
italy = word2vec(emb,"Italy");
rome = word2vec(emb, "Rome");
paris = word2vec(emb, "Paris");
Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.
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Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection'
option to 'none'. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents, 'PaddingDirection', 'none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans=10x1 cell array
{300x10 single}
{300x11 single}
{300x11 single}
{300x6 single}
{300x5 single}
{300x10 single}
{300x8 single}
{300x9 single}
{300x7 single}
{300x13 single}

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb, "king");
man = word2vec(emb, "man");
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woman = word2vec(emb, "woman");
word = vec2word(emb,king - man + woman)

word =
Ilqueenll

Write Word Embedding to File
Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Train a word embedding using trainWordEmbedding.
emb = trainWordEmbedding(documents)
Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb, filename)

Read the word embedding file using readWordEmbedding.
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument | trainWordEmbedding |
vec2word | word2vec | wordEmbeddinglLayer | wordEncoding

Topics

“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
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“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordEmbeddingLayer

Word embedding layer for deep learning networks

Description

A word embedding layer maps word indices to vectors.

Use a word embedding layer in a deep learning long short-term memory (LSTM) network. An LSTM
network is a type of recurrent neural network (RNN) that can learn long-term dependencies between
time steps of sequence data. A word embedding layer maps a sequence of word indices to embedding
vectors and learns the word embedding during training.

This layer requires Deep Learning Toolbox™.

Creation

Syntax

layer
layer

wordEmbeddinglLayer(dimension, numWords)
wordEmbeddinglLayer(dimension, numWords,Name,Value)

Description

layer = wordEmbeddinglLayer(dimension,numWords) creates a word embedding layer and
specifies the embedding dimension and vocabulary size.

layer = wordEmbeddinglLayer(dimension,numWords, Name,Value) sets optional properties
on page 1-477 using one or more name-value pairs. Enclose each property name in single quotes.

Properties
Word Embedding

Dimension — Dimension of word embedding
positive integer

Dimension of the word embedding, specified as a positive integer.
Example: 300

NumWords — Number of words in model
positive integer

Number of words in the model, specified as a positive integer. If the number of unique words in the

training data is greater than NumWords, then the layer maps the out-of-vocabulary words to the same
vector.
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Parameters and Initialization

WeightsInitializer — Function to initialize weights
‘narrow-normal’' (default) | ‘glorot' | 'he' | 'orthogonal' | 'zeros' | 'ones' | function
handle

Function to initialize the weights, specified as one of the following:
* 'narrow-normal’ - Initialize the weights by independently sampling from a normal distribution

with zero mean and standard deviation 0.01.

* 'glorot' - Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/ (numIn + numQut), where numIn = NumWords + 1 and numQut = Dimension.

* 'he' - Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn = NumWords + 1.

* 'orthogonal' - Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

* 'zeros' - Initialize the weights with zeros.
* 'ones' - Initialize the weights with ones.

* Function handle - Initialize the weights with a custom function. If you specify a function handle,
then the function must be of the form weights = func(sz), where sz is the size of the weights.

The layer only initializes the weights when the Weights property is empty.

Data Types: char | string | function handle

Weights — Layer weights
matrix

Layer weights, specified as a Dimension-by-(NumWords+1) array.

For input integers i less than or equal to NumWords, the layer outputs the vector Weights(:,1i).
Otherwise, the layer maps outputs the vector Weights(:,NumWords+1).

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.

Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
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regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

Example: 2
Layer

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to ' ', then the software
automatically assigns a name at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Word Embedding Layer
Create a word embedding layer with embedding dimension 300 and 5000 words.
layer = wordEmbeddinglLayer(300,5000)

layer =
WordEmbeddingLayer with properties:

Name:

Hyperparameters
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Dimension: 300
NumWords: 5000

Learnable Parameters
Weights: []

Show all properties

Include a word embedding layer in an LSTM network.

inputSize = 1;
embeddingDimension = 300;
numWords = 5000;
numHiddenUnits = 200;
numClasses = 10;

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension, numWords)
lstmLayer(numHiddenUnits, 'OutputMode', 'last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]

layers =
6x1 Layer array with layers:

1 t Sequence Input Sequence input with 1 dimensions

2 t Word Embedding Layer Word embedding layer with 300 dimensions and 5000 unique wq
3 t LSTM LSTM with 200 hidden units

4 t Fully Connected 10 fully connected layer

5 " Softmax softmax

6 " Classification Output crossentropyex

Initialize Word Embedding Layer with Pretrained Word Embedding

To initialize a word embedding layer in a deep learning network with the weights from a pretrained
word embedding, use the word2vec function to extract the layer weights and set the 'Weights'
name-value pair of the wordEmbeddingLayer function. The word embedding layer expects columns
of word vectors, so you must transpose the output of the word2vec function.

emb = fastTextWordEmbedding;

words = emb.Vocabulary;
dimension = emb.Dimension;
numWords = numel(words);

layer = wordEmbeddinglLayer(dimension,numWords, ...
'Weights',word2vec(emb,words)"')

layer =
WordEmbeddingLayer with properties:

Name:
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Hyperparameters
Dimension: 300
NumWords: 999994

Learnable Parameters
Weights: [300x999994 singlel]

Show all properties

To create the corresponding word encoding from the word embedding, input the word embedding
vocabulary to the wordEncoding function as a list of words.

enc = wordEncoding(words)

enc =
wordEncoding with properties:

NumWords: 999994
Vocabulary: [1x999994 string]

References

[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward
neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013).

Extended Capabilities

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
doc2sequence | fastTextWordEmbedding | LstmLayer | sequenceInputLayer |
tokenizedDocument | trainNetwork | trainWordEmbedding | word2vec | wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)
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wordEncoding

Word encoding model to map words to indices and back

Description

A word encoding maps words in a vocabulary to numeric indices.

To encode documents as matrices of word or n-gram counts, use encode.

Creation

Syntax

wordEncoding(documents)
wordEncoding(words)
wordEncoding(documents,Name, Value)

enc
enc
enc

Description
enc = wordEncoding(documents) creates a word encoding from the words in documents.
enc = wordEncoding(words) creates a word encoding from an array of words.

enc = wordEncoding(documents,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, 'Order', ' frequency' assigns lower indices to more
frequent words.

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.

Data Types: string | char | cell
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Order', ' frequency' sorts the indices by the total frequency in the documents in
descending order.
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Order — Sorting of indices
"first-seen' (default) | ' frequency'

Sorting of indices, specified as the comma-separated pair consisting of 'Order' and one of the
following:

+ 'first-seen' - Assign indices to the words in the order in which they occur in the documents.

+ 'frequency' - Assign indices to the words sorted by total frequency in the documents in
descending order.

If 'Order' is 'frequency' and multiple words have the same frequency, then the function does not
assign indices in any particular order.

MaxNumWords — Maximum number of words to encode
Inf (default) | positive integer

Maximum number of words to encode, specified as a positive integer or Inf. The function first sorts
the indices according to the 'Order' option and then encodes the top MaxNumWords words. If
MaxNumWords is Inf, then the function encodes all the words in the input documents.

Properties

NumWords — Number of words in model
nonnegative integer

Number of words in the model, specified as a nonnegative integer.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions

ind2word Map encoding index to word

word2ind Map word to encoding index

isVocabularyWord Test if word is member of word embedding or encoding

Examples

Create Word Encoding

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);
documents(1:10)



wordEncoding

ans =
10x1 tokenizedDocument:

70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair ti
71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial -
64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel

Create a word encoding.
enc = wordEncoding(documents)

enc =
wordEncoding with properties:

NumWords: 3092
Vocabulary: [1x3092 string]

Create Word Encoding from Word Embedding

To create a word encoding from a word embedding, input the word embedding vocabulary to the

wordEncoding function as a list of words.
Load pretrained word embedding.

emb = fastTextWordEmbedding;

Extract the vocabulary.

words = emb.Vocabulary;

Create a word encoding using the vocabulary.

enc = wordEncoding(words)

enc =
wordEncoding with properties:

NumWords: 999994
Vocabulary: [1x999994 string]

To initialize the corresponding word embedding layer in a deep learning network with the word
embedding weights, use the word2vec function to extract the layer weights and set the 'Weights'
name-value pair of the wordEmbeddinglLayer function. The word embedding layer expects columns

of word vectors, so you must transpose the output of the word2vec function.

dimension = emb.Dimension;
numWords = numel(words);
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layer

layer

= wordEmbeddingLayer(dimension, numWords,
'Weights',word2vec(emb,words) ")

WordEmbeddinglLayer with properties:

Name:

Hyperparameters
Dimension:
NumWords:

300
999994

Learnable Parameters

Weights:

[300x999994 single]

Show all properties

Create Word Encoding of Top Words in Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
extractFileText (filename);

ta = split(str,newline);

nts = tokenizedDocument (textData);

str =
textDa
docume

documents(1:10)

ans =

10x1 tokenizedDocument:

70
71
65
71
61
68
64
70
70
69

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

fairest creatures desire increase thereby beautys rose might never die riper time
forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
look thy glass tell face thou viewest time face form another whose fresh repair tl
unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
let winters ragged hand deface thee thy summer ere thou distilld make sweet vial

lo orient gracious light lifts up burning head eye doth homage newappearing sight
music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel

Create a word encoding. Sort the indices by frequency and encode only the top 100 words.

enc =

enc =

wordEncoding(documents,
'Order', 'frequency',
'"MaxNumWords',100)

wordEncoding with properties:
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NumWords:
Vocabulary:

100
[1x100 string]

View the words corresponding to indices 1, 2, and 3 using the ind2word function.

idx = [1 2 3];
words = ind2word(enc,idx)
words = 1x3 string

Ilthyll Ilthoull Il'l-ovell

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

a = split(str,newline);

ts = tokenizedDocument (textData);

textDat
documen

documents(1:10)

ans =
10x1 tokenizedDocument:
70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time
71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair ti
71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial -
64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bel«

Create a word encoding.

enc

enc =

wordEncoding(documents)

wordEncoding with properties:

NumWords: 3092
Vocabulary: [1x3092 string]

View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)
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words
Ilf

= 1Ix3 string

airest"

"desire" "thereby"

Map Words to Encoding Indices

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
extractFileText(filename);

ta = split(str,newline);

nts = tokenizedDocument(textData);

str =
textDa
docume

documents(1:10)

ans =
10x1

70
71
65
71
61
68
64
70
70
69

tokenizedDocument:

tokens: fairest creatures desire increase thereby beautys rose might never die riper time
tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy yout
tokens: look thy glass tell face thou viewest time face form another whose fresh repair tl
tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures
tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair
tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial
tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight
tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lov
tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt ha
tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art bels

Create a word encoding.

enc =

enc =

wordEncoding(documents)

wordEncoding with properties:

Vo

NumWords:
cabulary:

3092
[1x3092 string]

Map the words "rose", "love", and "beauty" to encoding indices using the word2ind function.

words = ["rose" "love" "beauty"];
word2ind(enc,words)

idx =
idx =

7

1x3

387

79

Convert Documents to Sequences of Word Indices

Load the factory reports data and create a tokenizedDocument array.
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filename = "factoryReports.csv";

data = readtable(filename, 'TextType', 'string');
textData = data.Description;

documents = tokenizedDocument (textData);

Create a word encoding.

enc = wordEncoding(documents);

Convert the documents to sequences of word indices.

sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the number of
word indices in the sequence. Because the sequences are padded, S is constant.

sequences(1:10)

ans=10x1 cell array
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}
{1x17 double}

See Also
doc2sequence | fastTextWordEmbedding | ind2word | isVocabularyWord |
tokenizedDocument | word2ind | word2vec | wordEmbedding | wordEmbeddinglLayer

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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Write documents to text file

Syntax

writeTextDocument (documents, filename)
writeTextDocument (documents, filename, 'Append', true)

Description

writeTextDocument (documents, filename) writes documents to the specified text file. The
function writes one document per line with a space between each word in UTF-8.

writeTextDocument(documents, filename, 'Append', true) appends to the file instead of
overwriting.

Examples

Write Documents to Text File

Write an array of documents to a text file.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

6 tokens: an example of a short sentence

4 tokens: a second short sentence

filename = "documents.txt";
writeTextDocument(documents, filename)

Append Documents to Text File
Write an array of documents to a text file by appending the documents one at a time.

Create an array of tokenized documents.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:
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6 tokens: an example of a short sentence
4 tokens: a second short sentence

Write the first document to the file.

filename = "documents.txt";
writeTextDocument (documents (1), filename)

View the contents of the file using extractFileText.

str extractFileText(filename)

str =
"an example of a short sentence"

Append the second document to the text file.
writeTextDocument(documents(2),filename, 'Append', true)

View the contents of the file using extractFileText.
str = extractFileText(filename)
str =

"an example of a short sentence
a second short sentence"

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char

See Also

extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument

Topics

“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2017b
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Write word embedding file

Syntax

writeWordEmbedding(emb, filename)

Description

writeWordEmbedding(emb, filename) writes the word embedding emb to the file filename. The
function writes the vocabulary in UTF-8 in word2vec text format.

Examples

Write Word Embedding to File
Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed. txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.
emb = trainWordEmbedding(documents)
Training: 100% Loss: 0 Remaining time: O hours 0 minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb, filename)

Read the word embedding file using readWordEmbedding.
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:
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Dimension: 100
Vocabulary: [1x401 string]

Input Arguments

emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char

See Also

doc2sequence | fastTextWordEmbedding | readWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbedding | wordEmbeddinglLayer |
wordEncoding

Topics

“Train a Sentiment Classifier”

“Classify Text Data Using Deep Learning”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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